AR 模型的功率谱

功率谱密度(Power Spectral Density, PSD)的表达式是从信号的自相关函数和系统的频率响应推导出来的,特别是对于 AR(Auto-Regressive,自回归)模型。以下是推导的过程:


1. AR 模型的定义

一个 p p p-阶 AR 模型定义为:
x ( n ) = ∑ k = 1 p a k x ( n − k ) + w ( n ) x(n) = \sum_{k=1}^p a_k x(n-k) + w(n) x(n)=k=1∑pakx(n−k)+w(n)

其中:

  • a k a_k ak 是 AR 模型的系数;
  • w ( n ) w(n) w(n) 是白噪声序列,满足 E [ w ( n ) ] = 0 E[w(n)] = 0 E[w(n)]=0, E [ w ( n ) w ( m ) ] = σ w 2 δ ( n − m ) E[w(n)w(m)] = \sigma_w^2 \delta(n-m) E[w(n)w(m)]=σw2δ(n−m)。

2. 信号的 Z 变换

对模型两边应用 Z 变换(假设初始条件为 0):
X ( z ) = ∑ k = 1 p a k z − k X ( z ) + W ( z ) X(z) = \sum_{k=1}^p a_k z^{-k} X(z) + W(z) X(z)=k=1∑pakz−kX(z)+W(z)

整理得到:
X ( z ) = W ( z ) 1 − ∑ k = 1 p a k z − k X(z) = \frac{W(z)}{1 - \sum_{k=1}^p a_k z^{-k}} X(z)=1−∑k=1pakz−kW(z)

这表示 x ( n ) x(n) x(n) 是由白噪声 w ( n ) w(n) w(n) 经过一个系统滤波得到的,系统的传递函数为:
H ( z ) = 1 1 − ∑ k = 1 p a k z − k H(z) = \frac{1}{1 - \sum_{k=1}^p a_k z^{-k}} H(z)=1−∑k=1pakz−k1


3. 功率谱密度的定义

信号 x ( n ) x(n) x(n) 的功率谱密度定义为:
S x ( f ) = lim ⁡ N → ∞ E [ ∣ X ( f ) ∣ 2 ] S_x(f) = \lim_{N \to \infty} E\left[ |X(f)|^2 \right] Sx(f)=N→∞limE[∣X(f)∣2]

通过 Wiener-Khinchin 定理,功率谱密度也是信号自相关函数 r ( k ) r(k) r(k) 的傅里叶变换:
S x ( f ) = F { r ( k ) } S_x(f) = \mathcal{F}\{r(k)\} Sx(f)=F{r(k)}

结合白噪声的性质和滤波器系统,功率谱密度可以写为:
S x ( f ) = σ w 2 ⋅ ∣ H ( f ) ∣ 2 S_x(f) = \sigma_w^2 \cdot |H(f)|^2 Sx(f)=σw2⋅∣H(f)∣2


4. 频率响应 H ( f ) H(f) H(f)

将 H ( z ) H(z) H(z) 表达为频率的函数 f f f,使用 z = e j 2 π f z = e^{j2\pi f} z=ej2πf 代入:
H ( f ) = 1 1 − ∑ k = 1 p a k e − j 2 π f k H(f) = \frac{1}{1 - \sum_{k=1}^p a_k e^{-j2\pi f k}} H(f)=1−∑k=1pake−j2πfk1

因此, ∣ H ( f ) ∣ 2 |H(f)|^2 ∣H(f)∣2 为:
∣ H ( f ) ∣ 2 = 1 ∣ 1 − ∑ k = 1 p a k e − j 2 π f k ∣ 2 |H(f)|^2 = \frac{1}{\left|1 - \sum_{k=1}^p a_k e^{-j2\pi f k}\right|^2} ∣H(f)∣2=∣1−∑k=1pake−j2πfk∣21


5. AR 模型的功率谱

最终功率谱密度为:
S x ( f ) = σ w 2 ∣ 1 − ∑ k = 1 p a k e − j 2 π f k ∣ 2 S_x(f) = \frac{\sigma_w^2}{\left|1 - \sum_{k=1}^p a_k e^{-j2\pi f k}\right|^2} Sx(f)=∣1−∑k=1pake−j2πfk∣2σw2

对于二阶 AR 模型( p = 2 p = 2 p=2):
S x ( f ) = σ w 2 ∣ 1 − a 1 e − j 2 π f − a 2 e − j 4 π f ∣ 2 S_x(f) = \frac{\sigma_w^2}{\left| 1 - a_1 e^{-j2\pi f} - a_2 e^{-j4\pi f} \right|^2} Sx(f)=∣1−a1e−j2πf−a2e−j4πf∣2σw2


6. 推导总结

功率谱密度 S x ( f ) S_x(f) Sx(f) 的核心是利用 AR 模型的滤波器特性:

  1. x ( n ) x(n) x(n) 是白噪声 w ( n ) w(n) w(n) 通过一个滤波器得到的;
  2. 滤波器的频率响应 H ( f ) H(f) H(f) 由 AR 系数 a k a_k ak 确定;
  3. 白噪声的功率谱是常数 σ w 2 \sigma_w^2 σw2,经过滤波器后功率谱形状由 ∣ H ( f ) ∣ 2 |H(f)|^2 ∣H(f)∣2 决定。
相关推荐
ykjhr_3d4 天前
相较于传统AR作战环境虚拟仿真系统,其优势体现在哪些方面?
ar
huoyingcg7 天前
武汉火影数字|VR大空间是什么?如何打造VR大空间项目
ar·vr·动画·虚拟现实·增强现实
Teamhelper_AR9 天前
AR眼镜:能源行业设备维护的“安全守护者”
安全·ar
Teamhelper_AR10 天前
AR技术:制造业质量控制的“智能革新”
ar
虹科电子科技12 天前
安宝特方案丨工业AR+AI质检方案:致力于提升检测精度与流程效率
人工智能·ar·工业ai质检
像素工坊可视化12 天前
AR远程协作网页设计:虚实融合场景下的故障标注与操作指引界面
ar·网页设计
Teamhelper_AR13 天前
AR文旅新纪元:从黄姚古镇到秦始皇陵,虚实共生的沉浸式体验革命
ar
ykjhr_3d14 天前
关于AR地产发展现状的深度探究
ar
Teamhelper_AR18 天前
AR智能巡检:制造业运维效率提升的关键
运维·ar
EndingCoder19 天前
Three.js 与 WebXR:初识 VR/AR 开发
开发语言·前端·javascript·ar·vr