例题1:
思路讲解:
这个 (A-2E)可逆,所以有P(A-2E) = E,
也就是(A-2E)的逆矩阵是P;
那么PA = (A-2E)的逆 * A = B P(A-2E,A)=(E,B)
所以就可以直接求出B,也就是(A-2E)的逆 * A
例题2:
思路讲解:
X-AX=B;
(E-A)X = B;
可得:X=(E-A)的逆 * B
有题意可知,(E-A)可逆矩阵 那么有P(E-A)=E,
意味着(E-A)的逆=P 那么PB=(E-A)的逆*B=X
于是,P(E-A,B)=(E,X) 所以就可以直接求出X,也就是(E-A)的逆*B