六大基础深度神经网络之CNN

左侧是传统卷积网络输入的是一列像素点,右侧是卷积神经网络,输入的是具有长宽通道数的原始图像

下图为整体架构。卷积层可以认为提取特征,池化层是压缩特征。全连接层是把图像展平然后计算10个类别的概率值

给出一张图像不同区域的特征不同,我们需要提取出来这些不同。下图从一张32*32*3的图像中提取一张5*5*3的小区域,第一步将左上角三乘三的区域与区域右下角小字的权值矩阵进行内积计算,就是对应位置相乘,即3*0+3*1+2*2+0*2+0*2+1*0+3*0+1*1+2*2=12,然后每次把3*3的区域与权值相乘,最终得到绿色的矩阵。

常见图像是彩色的就是三通道,上图中的32*32*3中的3也就说明是彩色图像,若为1则是黑白图像

对于每个彩色图像的卷积来讲,rgb每个通道都会卷积计算的一个矩阵,再把三个矩阵对应相加就是彩色图像的卷积结果

其中W1、H1表示输入的宽度、长度; W2、 H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小; S表示滑动窗口的步长;P表示边界填充(加几圈0)。

池化目的是减少特征图的信息量,下图为最大池化,选取2*2的过滤器步长为2,选取每个2*2区域内最大的数

D为vgg较主流版本,其中maxpool会损失信息,为了弥补损失的信息,在下一次卷积中会使特征图翻倍

在CIFAR-10数据集中发现56层卷积比20层更效果更差,为了避免层数增加导致的效果变差引入残差网络

相关推荐
CODE_RabbitV21 分钟前
【1min 速通 -- PyTorch 张量数据类型】张量类型的获取、转化与判别
人工智能·pytorch·python
良策金宝AI29 分钟前
2025电力工程AI助手:良策金宝AI如何领跑行业数智化转型?
人工智能·工程设计
网络精创大傻44 分钟前
在 AWS 上启动您的 AI 代理:Bedrock、Lambda 和 API 网关
人工智能·云计算·aws
说私域1 小时前
链动2+1模式、AI智能名片与S2B2C商城小程序:破解直播电商流量转化困局的创新路径
人工智能·小程序
想暴富,学技术1 小时前
AI提示词学习基础(一)
人工智能·学习
萤丰信息1 小时前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
菠菠萝宝2 小时前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
大模型真好玩2 小时前
低代码Agent开发框架使用指南(七)—Coze 数据库详解
人工智能·agent·coze
唐兴通个人2 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能
视界先声2 小时前
AIDAv2:重新定义DeFi的AI驱动金融基础设施
人工智能·金融