六大基础深度神经网络之CNN

左侧是传统卷积网络输入的是一列像素点,右侧是卷积神经网络,输入的是具有长宽通道数的原始图像

下图为整体架构。卷积层可以认为提取特征,池化层是压缩特征。全连接层是把图像展平然后计算10个类别的概率值

给出一张图像不同区域的特征不同,我们需要提取出来这些不同。下图从一张32*32*3的图像中提取一张5*5*3的小区域,第一步将左上角三乘三的区域与区域右下角小字的权值矩阵进行内积计算,就是对应位置相乘,即3*0+3*1+2*2+0*2+0*2+1*0+3*0+1*1+2*2=12,然后每次把3*3的区域与权值相乘,最终得到绿色的矩阵。

常见图像是彩色的就是三通道,上图中的32*32*3中的3也就说明是彩色图像,若为1则是黑白图像

对于每个彩色图像的卷积来讲,rgb每个通道都会卷积计算的一个矩阵,再把三个矩阵对应相加就是彩色图像的卷积结果

其中W1、H1表示输入的宽度、长度; W2、 H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小; S表示滑动窗口的步长;P表示边界填充(加几圈0)。

池化目的是减少特征图的信息量,下图为最大池化,选取2*2的过滤器步长为2,选取每个2*2区域内最大的数

D为vgg较主流版本,其中maxpool会损失信息,为了弥补损失的信息,在下一次卷积中会使特征图翻倍

在CIFAR-10数据集中发现56层卷积比20层更效果更差,为了避免层数增加导致的效果变差引入残差网络

相关推荐
音视频牛哥1 小时前
打通视频到AI的第一公里:轻量RTSP服务如何重塑边缘感知入口?
人工智能·计算机视觉·音视频·大牛直播sdk·机器视觉·轻量级rtsp服务·ai人工智能
Wendy14412 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰2 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索3 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7874 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny4 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子4 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA4 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥5 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng5 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习