六大基础深度神经网络之CNN

左侧是传统卷积网络输入的是一列像素点,右侧是卷积神经网络,输入的是具有长宽通道数的原始图像

下图为整体架构。卷积层可以认为提取特征,池化层是压缩特征。全连接层是把图像展平然后计算10个类别的概率值

给出一张图像不同区域的特征不同,我们需要提取出来这些不同。下图从一张32*32*3的图像中提取一张5*5*3的小区域,第一步将左上角三乘三的区域与区域右下角小字的权值矩阵进行内积计算,就是对应位置相乘,即3*0+3*1+2*2+0*2+0*2+1*0+3*0+1*1+2*2=12,然后每次把3*3的区域与权值相乘,最终得到绿色的矩阵。

常见图像是彩色的就是三通道,上图中的32*32*3中的3也就说明是彩色图像,若为1则是黑白图像

对于每个彩色图像的卷积来讲,rgb每个通道都会卷积计算的一个矩阵,再把三个矩阵对应相加就是彩色图像的卷积结果

其中W1、H1表示输入的宽度、长度; W2、 H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小; S表示滑动窗口的步长;P表示边界填充(加几圈0)。

池化目的是减少特征图的信息量,下图为最大池化,选取2*2的过滤器步长为2,选取每个2*2区域内最大的数

D为vgg较主流版本,其中maxpool会损失信息,为了弥补损失的信息,在下一次卷积中会使特征图翻倍

在CIFAR-10数据集中发现56层卷积比20层更效果更差,为了避免层数增加导致的效果变差引入残差网络

相关推荐
姚瑞南7 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣28 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
补三补四29 分钟前
SMOTE 算法详解:解决不平衡数据问题的有效工具
人工智能·算法
为java加瓦29 分钟前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt
一车小面包31 分钟前
对注意力机制的直观理解
人工智能·深度学习·机器学习
逝水年华QAQ32 分钟前
什么是Edge TTS?
人工智能
ARM+FPGA+AI工业主板定制专家38 分钟前
基于NVIDIA ORIN+FPGA+AI自动驾驶硬件在环注入测试
人工智能·fpga开发·机器人·自动驾驶
AI小云43 分钟前
【Python与AI基础】Python编程基础:模块和包
人工智能·python
用户5191495848451 小时前
Paytium WordPress插件存储型XSS漏洞深度分析
人工智能·aigc
weixin_433417671 小时前
PyTorch&TensorFlow
人工智能·pytorch·tensorflow