flume对kafka中数据的导入导出、datax对mysql数据库数据的抽取

目录

1、flume自定义拦截器

2、创建topic为yuekao的主题,并使用flume将数据抽取到该主题的kafka中

3、将kafka中的数据放入到hdfs上,目录为:/yuekao/ods/zhuanzhang?

[?4、?通过datax,对MySQL数据库中的表进行抽取,落入hdfs指定的目录中: /yuekao/ods/user_info](#?4、?通过datax,对MySQL数据库中的表进行抽取,落入hdfs指定的目录中: /yuekao/ods/user_info)

要求:

1、flume自定义拦截器

抽取trans_info.json的数据到kafka上,对其中的tr_flag=0的数据进行过滤抛弃,只保留正常的状态数据

在pom.xml中放入依赖包:

<dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>

        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.25</version>
        </dependency>


        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.6.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.6.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.6.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>1.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-sdk</artifactId>
            <version>1.9.0</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.48</version>
        </dependency>

使用java代码,自定义拦截器:

package com.bigdata.yuekao04;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import org.codehaus.jackson.JsonNode;
import org.codehaus.jackson.map.ObjectMapper;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class DemoInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        try {
            // 获取事件体中的数据(假设数据是JSON格式存储在事件体中)
            String data = new String(event.getBody());

            // 使用Jackson将JSON字符串解析为JsonNode对象
            ObjectMapper objectMapper = new ObjectMapper();
            JsonNode jsonNode = objectMapper.readTree(data);

            // 获取tr_flag的值
            int trFlag = jsonNode.get("tr_flag").asInt();

            // 如果tr_flag不等于0,保留该事件
            if (trFlag!= 0) {
                return event;
            }
        } catch (IOException e) {
            e.printStackTrace();
        }

        // 如果tr_flag等于0,返回null,表示过滤掉该事件
        return null;
        }

    @Override
    public List<Event> intercept(List<Event> list) {
        return null;
    }

    @Override
    public void close() {

    }

    public static class BuilderEvent implements Builder{

        @Override
        public Interceptor build() {
            return new DemoInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

打包java代码,放入/flume/lib下面

2、创建topic为yuekao的主题,并使用flume将数据抽取到该主题的kafka中

编写conf文件(yuekao04.conf),将数据抽取到kafka新创建的主题中:

# 定义Flume agent名称
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 配置source
a1.sources.r1.type = TAILDIR
#以空格分隔的文件组列表。每个文件组表示要跟踪的一组文件
a1.sources.s1.filegroups = f1
#文件组的绝对路径
a1.sources.s1.filegroups.f1=/home/trans_info1.json
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.bigdata.DemoInterceptor$Builder

# 配置channel
a1.channels.c1.type = file

# 配置sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = yuekao04
a1.sinks.k1.kafka.bootstrap.servers = bigdata01:9092
a1.sinks.k1.channel = c1
3、将kafka中的数据放入到hdfs上,目录为:/yuekao/ods/zhuanzhang

编写conf文件,然后执行该文件,将kafka中的数据放入hdfs中:

a1.sources = r1
a1.channels = c1
a1.sinks=k1

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.kafka.bootstrap.servers = bigdata01:9092,bigdata02:9092,bigdata03:9092
a1.sources.r1.kafka.topics = yuekao04
a1.sources.r1.kafka.consumer.group.id =yuekao
a1.sources.r1.batchSize = 100
a1.sources.r1.batchDurationMillis = 2000

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /yuekao/ods/zhuanzhang/%y-%m-%d
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.fileType = DataStream

结果展示:

4、通过datax,对MySQL数据库中的表进行抽取,落入hdfs指定的目录中: /yuekao/ods/user_info

先在mysql中建表,然后将user_info.sql表中数据插入:

CREATE TABLE `user_info` (
`name` VARCHAR (255) ,
phone_num VARCHAR (255) ,
email VARCHAR (255) ,
addr_info VARCHAR (255) ,
gender VARCHAR (255) ,
idno VARCHAR (255) ,
create_time VARCHAR (255) ,
user_id int
);

编写json文件(demo.json),然后执行,将数据库中的数据放入hdfs中:

{
    "job": {
        "setting": {
            "speed": {
                 "channel": 3
            },
            "errorLimit": {
                "record": 0,
                "percentage": 0.02
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "writeMode": "insert",
                        "username": "root",
                        "password": "123456",
                        "column": [
                            "name",
                            "phone_num",
                            "email",
                            "addr_info",
							"gender",
							"idno",
							"create_time",
							"user_id"
                        ],
                        "splitPk": "user_id",
                        "connection": [
                            {
                                "table": [
                                    "user_info"
                                ],
                                "jdbcUrl": [
     "jdbc:mysql://bigdata01:3306/yuekao"
                                ]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://bigdata01:9820",
                        "fileType": "text",
                        "path": "/yuekao/ods/user_info",
                        "fileName": "user_info.txt",
                        "column": [
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "phone_num",
                                "type": "string"
                            },
                            {
                                "name": "email",
                                "type": "string"
                            },
                            {
                                "name": "addr_info",
                                "type": "string"
                            },
							{
                                "name": "gender",
                                "type": "string"
                            },
							{
                                "name": "idno",
                                "type": "string"
                            },
							{
                                "name": "create_time",
                                "type": "string"
                            },
							{
                                "name": "user_id",
                                "type": "int"
                            }
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": ","
                    }
                }
            }
        ]
    }
}

执行json文件:

datax.py demo.json

结果展示:

数据放不进来,有需要的小伙伴可以私我!!!

相关推荐
两点王爷4 分钟前
Java读取csv文件内容,保存到sqlite数据库中
java·数据库·sqlite·csv
凡人的AI工具箱1 小时前
每天40分玩转Django:Django部署概述
开发语言·数据库·后端·python·django
2401_871213302 小时前
mysql之MHA
数据库·mysql
言之。2 小时前
【MySQL】事务
数据库·mysql
潇湘秦2 小时前
Oracle 11G还有新BUG?ORACLE 表空间迷案!
数据库·oracle
Lin_Miao_092 小时前
Kafka优势
分布式·kafka
凡人的AI工具箱3 小时前
每天40分玩转Django:Django Email
数据库·人工智能·后端·python·django·sqlite
后端转全栈_小伵3 小时前
SQLite本地数据库的简介和适用场景——集成SpringBoot的图文说明
数据库·spring boot·后端·sqlite·学习方法
斯普信专业组3 小时前
全面Kafka监控方案:从配置到指标
kafka
斯普信专业组3 小时前
Kafka数据迁移全解析:同集群和跨集群
kafka