Flink窗口window详解(分类、生命周期、窗口分配器、窗口函数、触发器)

一、窗口的分类

时间窗口:滚动(窗口大小)、滑动(窗口大小、滑动步长)、会话(会话超时时间)

计数窗口:滚动、滑动

二、窗口window的四个关键组件

窗口操作一般在keyby之后调用window函数进行计算,因为进行keyby之后,原始的datastream就会分成多条逻辑流,就是keyedStream,基于keyedStream的窗口操作会开启多个并行子任务,即对不同的key分别开启一个并行子任务,各自独立进行窗口计算。

如果没有keyBy而直接进行窗口计算,调用的是windowAll函数,windowAll函数本身是一个非并行的操作,那么即使手动调大了窗口算子并行度也是无济于事的,最终只会在一个task上进行计算,并行度为1。在实际应用中不推荐。

(1)(必要)窗口分配器(window assigner)

定义数据应该被分配到哪个窗口,数据流经过窗口分配器处理后得到的是windowedStream,这个类型并不是datastream, 所以不能直接进行其他转换,必须进一步调用窗口函数,才能再次得到datastream。

时间窗口根据分类可以通过在window方法中传入不同参数定义如下六种窗口分配器:TumblingProcessingTimeWindows、SlidingProcessingTimeWindows、ProcessingTimeSessionWindows、TumblingEventTimeWindows、SlidingEventTimeWindows、EventTimeSessionWindows。

计数窗口直接调用.countWindow()方法,传入一个参数则是滚动,两个则是滑动计数窗口。

(2)(必要)窗口函数(window functions)

定义窗口数据的具体计算逻辑。原**始的datastream经过窗口分配器处理之后的数据类型时windowedStream,它不属于dataStream,需要进一步调用窗口函数才能变成dataStream。**窗口函数基于处理方式的不同,可以分为如下两种:

增量聚合函数(流处理思想) :来一条数据处理一条,但不立即输出计算结果,等窗口到了结束时间需要计算结果的时候,直接将之前的聚合状态输出,提高了程序运行效率和实时性

典型的增量聚合函数有两种:归约函数.reduce((new ReduceFunction))和聚合函数.aggrerate(new AggregateFuntion)。归约函数要求聚合结果类型与原始数据类型一致,适用面更窄。聚合函数可以自定义中间状态累加器,更符合Flink的有状态的流处理思想。

全窗口函数(批处理思想): 先收集窗口中的数据并缓存起来,等到窗口要输出计算结果时再取出全部数据进行计算。全窗口函数再有些场合十分有用 :如要计算分位数,则必须等所有数据到齐才能进行计算。此外,全窗口函数还能输出丰富的上下文信息(如窗口的起始时间)。

在Flink中,全窗口函数可以通过.process(new **ProcessWindowFunction)**来实现。

(3)(可选)触发器(Trigger)

触发器可以控制窗口函数的执行。试想这样一种情况:你要计算一台能的pv,你的窗口大小是一天(0点到24点),但你想要在中间的每一个整点时刻也能看到从当天0点累计到当前整点的pv(0-1,0-2,0-3...),那么就可以使用触发器,在每个整点也触发一次计算并输出计算结果。

对windowedStream类型的数据流调用.trigger()方法,就可以传入一个自定义触发器了。这里就不详述trigger的具体实现了,感兴趣的可以自己查看。

(4)(可选)退出器(Evictor)

在执行窗口函数之前或之后的移除数据的逻辑操作。对windowedStream调用.evictor()方法。

三、窗口的生命周期

(1)窗口的创建

窗口的类型和基本信息由窗口分配器(window assigners)指定,但窗口不会预先创建好,而是数据驱动创建的。当属于这个窗口的第一个元素到来时,就会创建对应的窗口。

(2)窗口计算的触发

窗口函数和触发器都能触发窗口的计算。窗口函数定义了窗口计算的逻辑,触发器则指定了调用窗口函数的条件。

(3)窗口的销毁

默认情况下,当水位线到达了窗口的结束时间,就会触发计算并销毁窗口。当设置了允许迟到数据后,水位线到达窗口的结束时间会触发计算,但窗口不会立即销毁,而是在(窗口结束时间+设置的允许等待的时间)的水位线到来才会销毁窗口。

相关推荐
发哥来了19 分钟前
主流AI视频生成工具商用化能力评测:五大关键维度对比分析
大数据·人工智能·音视频
無森~29 分钟前
MapReduce
大数据·mapreduce
重生之绝世牛码1 小时前
Linux软件安装 —— zookeeper集群安装
大数据·linux·运维·服务器·zookeeper·软件安装
!chen1 小时前
大数据技术领域发展与Spark的性能优化
大数据·性能优化·spark
重生之绝世牛码1 小时前
Linux软件安装 —— kafka集群安装(SASL密码验证)
大数据·linux·运维·服务器·分布式·kafka·软件安装
行业探路者2 小时前
如何利用二维码提升富媒体展示的效果?
大数据·人工智能·学习·产品运营·软件工程
YangYang9YangYan2 小时前
2026高职大数据与会计专业学数据分析的价值分析
大数据·数据挖掘·数据分析
Dxy12393102162 小时前
Elasticsearch 8.13.4 深度进阶指南:从底层架构到高阶实战的全维突围
大数据·elasticsearch·架构
云雾J视界2 小时前
RAG 还是微调?用 Gemini API 打造企业私有知识库的落地路径
大数据·人工智能·api·知识库·rag·gemini
TDengine (老段)2 小时前
TDengine C# 语言连接器进阶指南
大数据·数据库·人工智能·物联网·c#·时序数据库·tdengine