【视觉惯性SLAM:四、相机成像模型】

相机成像模型介绍

相机成像模型是计算机视觉和图像处理中的核心内容,它描述了真实三维世界如何通过相机映射到二维图像平面。相机成像模型通常包括针孔相机的基本成像原理、数学模型,以及在实际应用中如何处理相机的各种畸变现象。

一、针孔相机成像原理

针孔相机的定义

针孔相机是一种理想化的成像设备,其核心概念是通过一个非常小的孔(针孔)将光线投射到成像平面上。光线从三维世界中的某点出发,通过针孔投射到二维成像平面上,形成一个倒立的图像。

  • 工作原理:针孔只允许光线沿直线通过,没有镜头的干扰,因而能够在屏幕上生成清晰的图像。
  • 成像特点:
    • 图像倒立。
    • 焦距与成像平面的位置决定了图像的大小

几何关系

二、针孔相机成像模型

针孔相机的成像过程可以用一个数学模型表示,该模型是SLAM和多视图几何的基础。

理想化模型:摄像机投影模型

实际模型:考虑畸变

在实际相机中,由于镜头设计和制造工艺的限制,成像过程中会出现各种畸变。针孔相机模型需要进一步扩展,以引入畸变校正模型。

三、相机畸变模型

畸变的分类

相机畸变主要分为以下两种:

  • 径向畸变(Radial Distortion):光线的偏差随径向距离增加而增加,表现为桶形畸变或枕形畸变。
  • 切向畸变(Tangential Distortion):由于镜头和图像平面未完全平行而引起。

畸变的数学表示

为了校正畸变,相机成像模型需要引入额外的参数:

  • 径向畸变
  • 切向畸变
  • 完整校正公式

四、相机成像模型总结

  • 针孔相机成像模型是 SLAM 和三维重建中最基础的数学模型,能够精确描述三维点到二维图像的映射关系。
  • 相机畸变模型是实际应用中的必要补充,能够修正镜头引入的非理想因素,使成像更接近理想的针孔模型。
  • 在实际工程中,使用工具(如 OpenCV 的相机标定功能)可以快速求解相机的内参和畸变参数,以构建完整的成像模型。

理解相机成像模型的本质和应用,有助于提高计算机视觉任务(如目标检测、三维重建、SLAM)的精度和效果。

相关推荐
白熊1883 分钟前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
jndingxin4 小时前
OpenCV 图形API(69)图像与通道拼接函数------将一个 GMat 类型的对象转换为另一个具有不同深度GMat对象函数convertTo()
人工智能·opencv·计算机视觉
CoovallyAIHub4 小时前
Vision Transformers与卷积神经网络详细训练对比(附代码)
深度学习·算法·计算机视觉
白熊1885 小时前
【计算机视觉】TorchVision 深度解析:从核心功能到实战应用 ——PyTorch 官方计算机视觉库的全面指南
人工智能·pytorch·计算机视觉
AI视觉网奇6 小时前
python 求内轮廓
python·opencv·计算机视觉
蹦蹦跳跳真可爱5897 小时前
Python----卷积神经网络(卷积为什么能识别图像)
人工智能·python·深度学习·神经网络·计算机视觉·cnn
烟锁池塘柳09 小时前
【计算机视觉】Bayer Pattern与Demosaic算法详解:从传感器原始数据到彩色图像
人工智能·深度学习·计算机视觉
硅谷秋水10 小时前
MANIPTRANS:通过残差学习实现高效的灵巧双手操作迁移
人工智能·深度学习·机器学习·计算机视觉
Light6011 小时前
计算机视觉进化论:YOLOv12、YOLOv11与Darknet系YOLOv7的微调实战对比
人工智能·yolo·计算机视觉·模型压缩·注意力机制·微调策略·实时检测
CoovallyAIHub12 小时前
复杂背景下无人机影像小目标检测:MPE-YOLO抗遮挡与抗背景干扰设计
算法·计算机视觉·无人机