还在手动写正则解析GPT的返回内容么,试试Pydantic吧少年

在开发过程中,我们经常需要与GPT等大模型进行交互,并解析其返回的内容。传统的做法可能是手动编写正则表达式来提取所需的信息,但这种方式不仅繁琐,还容易出错。今天,我将介绍一种更优雅、更高效的方式------使用Pydantic来解析GPT的返回内容。

什么是Pydantic?

Pydantic 是一个Python库,主要用于数据验证和设置管理。它通过Python类型注解来定义数据模型,并自动验证输入数据的合法性。Pydantic的强大之处在于它能够将复杂的JSON数据直接转换为Python对象,极大地简化了数据处理流程。

为什么选择Pydantic?

  1. 类型安全:Pydantic利用Python的类型注解,确保数据的类型正确性。
  2. 自动验证:Pydantic会自动验证输入数据是否符合定义的模型,减少手动检查的工作量。
  3. 代码简洁:通过定义数据模型,代码更加清晰易读,维护起来也更加方便。
  4. 与GPT完美结合:Pydantic可以轻松解析GPT返回的JSON数据,并将其转换为Python对象。

示例代码

下面是一个使用Pydantic解析GPT返回内容的示例代码:

python 复制代码
from pydantic import BaseModel
from openai import OpenAI

# 定义数据模型
class Step(BaseModel):
    explanation: str
    output: str

class MathResponse(BaseModel):
    steps: list[Step]
    final_answer: str

# 初始化OpenAI客户端
client = OpenAI(
    base_url="http://your_base_url/v1/",
    api_key="your_api_key_here"
)

# 发送请求并解析返回内容
completion = client.beta.chat.completions.parse(
    model="gpt-4o",
    extra_headers={
        "apikey": "your_api_key_here"
    },
    messages=[
        {"role": "system", "content": "You are a helpful math tutor."},
        {"role": "user", "content": "solve 8x + 31 = 2"},
    ],
    response_format=MathResponse,
)

# 处理返回结果
message = completion.choices[0].message
print(message.parsed)

if message.parsed:
    print(message.parsed.steps)
    print("---\n")
    print(message.parsed.final_answer)
else:
    print(message.refusal)

代码解析

  1. 定义数据模型 :我们首先定义了两个Pydantic模型StepMathResponse,分别表示解题步骤和最终的数学解答。
  2. 初始化OpenAI客户端:通过OpenAI库初始化客户端,并设置API密钥和基础URL。
  3. 发送请求并解析返回内容 :使用client.beta.chat.completions.parse方法发送请求,并将返回的JSON数据解析为MathResponse对象。
  4. 处理返回结果:根据解析结果,输出解题步骤和最终答案。

运行结果

lua 复制代码
steps=[Step(explanation='Start by isolating the term with the variable. To do that, subtract 31 from both sides of the equation to maintain the equality.', output='8x + 31 - 31 = 2 - 31'), Step(explanation='Simplify both sides of the equation. On the left side, the 31 and -31 cancel out, leaving you with 8x. On the right side, 2 - 31 equals -29.', output='8x = -29'), Step(explanation='To solve for x, divide both sides of the equation by 8 to isolate x.', output='x = -\frac{29}{8}')] final_answer='x = -\frac{29}{8}'
[Step(explanation='Start by isolating the term with the variable. To do that, subtract 31 from both sides of the equation to maintain the equality.', output='8x + 31 - 31 = 2 - 31'), Step(explanation='Simplify both sides of the equation. On the left side, the 31 and -31 cancel out, leaving you with 8x. On the right side, 2 - 31 equals -29.', output='8x = -29'), Step(explanation='To solve for x, divide both sides of the equation by 8 to isolate x.', output='x = -\frac{29}{8}')]
---

x = -\frac{29}{8}

总结

通过使用Pydantic,我们可以轻松地将GPT返回的JSON数据转换为Python对象,避免了手动编写正则表达式的繁琐过程。这种方式不仅提高了代码的可读性和可维护性,还减少了出错的可能性。如果你还在手动解析GPT的返回内容,不妨试试Pydantic吧,少年!

相关推荐
程序员岳焱20 分钟前
Java 与 MySQL 性能优化:Java 实现百万数据分批次插入的最佳实践
后端·mysql·性能优化
麦兜*1 小时前
Spring Boot启动优化7板斧(延迟初始化、组件扫描精准打击、JVM参数调优):砍掉70%启动时间的魔鬼实践
java·jvm·spring boot·后端·spring·spring cloud·系统架构
大只鹅1 小时前
解决 Spring Boot 对 Elasticsearch 字段没有小驼峰映射的问题
spring boot·后端·elasticsearch
ai小鬼头1 小时前
AIStarter如何快速部署Stable Diffusion?**新手也能轻松上手的AI绘图
前端·后端·github
IT_10242 小时前
Spring Boot项目开发实战销售管理系统——数据库设计!
java·开发语言·数据库·spring boot·后端·oracle
bobz9652 小时前
动态规划
后端
stark张宇2 小时前
VMware 虚拟机装 Linux Centos 7.9 保姆级教程(附资源包)
linux·后端
亚力山大抵3 小时前
实验六-使用PyMySQL数据存储的Flask登录系统-实验七-集成Flask-SocketIO的实时通信系统
后端·python·flask
超级小忍3 小时前
Spring Boot 中常用的工具类库及其使用示例(完整版)
spring boot·后端
CHENWENFEIc4 小时前
SpringBoot论坛系统安全测试实战报告
spring boot·后端·程序人生·spring·系统安全·安全测试