python检测同心圆

python检测同心圆

原图如下:

python 复制代码
import cv2
import numpy as np

# 读取图像
image_path = r"E:\pycharm3\pythonProject\image\image.png"
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)  # 灰度图像
img_color = cv2.imread(image_path, cv2.IMREAD_COLOR)  # 彩色图像

# 检查图像加载
if img is None or img_color is None:
    print("图像加载失败,请检查文件路径是否正确:", image_path)
    exit()

# 第一次检测(较大圆)
circles1 = cv2.HoughCircles(
    img,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=60,
    param1=50,
    param2=60,
    minRadius=170,
    maxRadius=200
)

# 第二次检测(中等圆1)
circles2 = cv2.HoughCircles(
    img,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=170,
    param1=100,
    param2=60,
    minRadius=60,
    maxRadius=90
)

# 第三次检测(中等圆2,模糊图像)
blurred = cv2.GaussianBlur(img, (9, 9), 2)  # 高斯模糊处理
circles3 = cv2.HoughCircles(
    blurred,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=170,
    param1=100,
    param2=60,
    minRadius=60,
    maxRadius=150
)

# 第四次检测(较小圆,增强边缘特性)
edges = cv2.Canny(img, 50, 150)  # 使用 Canny 边缘检测
circles4 = cv2.HoughCircles(
    edges,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=30,
    param1=100,
    param2=60,
    minRadius=90,
    maxRadius=190

)

# 绘制检测结果
if circles1 is not None:
    circles1 = np.uint16(np.around(circles1))
    for i in circles1[0, :]:
        # 绘制第一个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (255, 0, 0), 2)  # 蓝色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (0, 255, 0), 3)  # 圆心
print(f"检测到大环外圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")


if circles2 is not None:
    circles2 = np.uint16(np.around(circles2))
    for i in circles2[0, :]:
        # 绘制第二个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 255, 255), 2)  # 黄色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 0, 255), 3)  # 圆心
print(f"检测到小环内圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

if circles3 is not None:
    circles3 = np.uint16(np.around(circles3))
    for i in circles3[0, :]:
        # 绘制第三个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 0, 255), 2)  # 红色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 255, 0), 3)  # 圆心
print(f"检测到小环外圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

if circles4 is not None:
    circles4 = np.uint16(np.around(circles4))
    for i in circles4[0, :]:
        # 绘制第四个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 255, 0), 2)  # 绿色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 0, 0), 3)  # 圆心
print(f"检测到大环内圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

# 显示结果
cv2.imshow("Multiple Hough Circle Detection (4 times)", img_color)
cv2.imwrite("detected_circles_result.png",img_color )  # 保存结果到文件
# 等待退出
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
这里有鱼汤2 分钟前
想成为下一个吉姆·西蒙斯,这十种经典K线形态你一定要记住
后端·python
Scoful10 分钟前
快速用 uv 模拟发布一个 Python 依赖包到 TestPyPI 上,以及常用命令
开发语言·python·uv
xyl86613 分钟前
Python 包管理器 uv 介绍
python·uv
databook15 分钟前
规则学习:让机器学习像人类一样思考的可解释之路
python·机器学习·scikit-learn
cylat39 分钟前
Day23 pipeline管道
人工智能·python·算法·机器学习
蓝桉~MLGT1 小时前
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java·开发语言·python
IOT.FIVE.NO.12 小时前
Conda安装pytorch和cuda出现问题的解决记录
人工智能·pytorch·python
SuperW7 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话8 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
liuzhenghua6610 小时前
Python任务调度模型
java·运维·python