python检测同心圆

python检测同心圆

原图如下:

python 复制代码
import cv2
import numpy as np

# 读取图像
image_path = r"E:\pycharm3\pythonProject\image\image.png"
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)  # 灰度图像
img_color = cv2.imread(image_path, cv2.IMREAD_COLOR)  # 彩色图像

# 检查图像加载
if img is None or img_color is None:
    print("图像加载失败,请检查文件路径是否正确:", image_path)
    exit()

# 第一次检测(较大圆)
circles1 = cv2.HoughCircles(
    img,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=60,
    param1=50,
    param2=60,
    minRadius=170,
    maxRadius=200
)

# 第二次检测(中等圆1)
circles2 = cv2.HoughCircles(
    img,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=170,
    param1=100,
    param2=60,
    minRadius=60,
    maxRadius=90
)

# 第三次检测(中等圆2,模糊图像)
blurred = cv2.GaussianBlur(img, (9, 9), 2)  # 高斯模糊处理
circles3 = cv2.HoughCircles(
    blurred,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=170,
    param1=100,
    param2=60,
    minRadius=60,
    maxRadius=150
)

# 第四次检测(较小圆,增强边缘特性)
edges = cv2.Canny(img, 50, 150)  # 使用 Canny 边缘检测
circles4 = cv2.HoughCircles(
    edges,
    cv2.HOUGH_GRADIENT,
    dp=1,
    minDist=30,
    param1=100,
    param2=60,
    minRadius=90,
    maxRadius=190

)

# 绘制检测结果
if circles1 is not None:
    circles1 = np.uint16(np.around(circles1))
    for i in circles1[0, :]:
        # 绘制第一个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (255, 0, 0), 2)  # 蓝色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (0, 255, 0), 3)  # 圆心
print(f"检测到大环外圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")


if circles2 is not None:
    circles2 = np.uint16(np.around(circles2))
    for i in circles2[0, :]:
        # 绘制第二个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 255, 255), 2)  # 黄色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 0, 255), 3)  # 圆心
print(f"检测到小环内圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

if circles3 is not None:
    circles3 = np.uint16(np.around(circles3))
    for i in circles3[0, :]:
        # 绘制第三个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 0, 255), 2)  # 红色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 255, 0), 3)  # 圆心
print(f"检测到小环外圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

if circles4 is not None:
    circles4 = np.uint16(np.around(circles4))
    for i in circles4[0, :]:
        # 绘制第四个检测结果的圆
        cv2.circle(img_color, (i[0], i[1]), i[2], (0, 255, 0), 2)  # 绿色圆
        cv2.circle(img_color, (i[0], i[1]), 2, (255, 0, 0), 3)  # 圆心
print(f"检测到大环内圆:中心=({i [0]}, {i[1]}), 半径={i[2]}")

# 显示结果
cv2.imshow("Multiple Hough Circle Detection (4 times)", img_color)
cv2.imwrite("detected_circles_result.png",img_color )  # 保存结果到文件
# 等待退出
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
IT90906 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
王哈哈^_^7 小时前
【数据集】【YOLO】目标检测游泳数据集 4481 张,溺水数据集,YOLO河道、海滩游泳识别算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·分类·视觉检测
007php0077 小时前
某游戏大厂 Java 面试题深度解析(四)
java·开发语言·python·面试·职场和发展·golang·php
这张生成的图像能检测吗7 小时前
(论文速读)EgoLife:走向自我中心的生活助手
人工智能·计算机视觉·生活·视觉语言模型
景彡先生7 小时前
Python pandas数据透视表(pivot_table)详解:从入门到实战,多维数据分析利器
python·数据分析·pandas
Blossom.1188 小时前
把AI“编”进草垫:1KB决策树让宠物垫自己报「如厕记录」
java·人工智能·python·算法·决策树·机器学习·宠物
极客数模9 小时前
2025年(第六届)“大湾区杯”粤港澳金融数学建模竞赛准备!严格遵循要求,拿下大奖!
大数据·python·数学建模·金融·分类·图论·boosting
倔强青铜三9 小时前
苦练Python第73天:玩转对象持久化,pickle模块极速入门
人工智能·python·面试
程序员三藏9 小时前
Postman持久化保存/设置断言详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
java1234_小锋9 小时前
PyTorch2 Python深度学习 - 卷积神经网络(CNN)介绍实例 - 使用MNIST识别手写数字示例
python·深度学习·cnn·pytorch2