教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件

1. 安装 PyCharm

  1. 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/
  2. 下载社区版(免费)或专业版(收费,提供更多功能)。
  3. 按照操作系统的安装指导安装 PyCharm。
  4. 安装后打开 PyCharm,并根据提示设置初始环境。

2. 安装 Anaconda

  1. 访问 Anaconda 官方网站:https://www.anaconda.com/

  2. 下载适合您操作系统的版本。

  3. 按照安装指导安装 Anaconda:

    • 确保选中将 Anaconda 加入到系统的 PATH(可选,常许可选)。
  4. 通过打开窗口或命令控制口输入以验证安装:

    bash 复制代码
    conda --version

3. 创建用于机器学习的虚拟环境

  1. 打开命令控制口或窗口。

  2. 通过下列命令创建一个新的虚拟环境:

    bash 复制代码
    conda create -n ml_env python=3.9
    • ml_env 换成您喜欢的环境名称。
    • 3.9 换成您需要的 Python 版本(如 3.10)。
  3. 启用刚创建的虚拟环境:

    • Windows 上:

      bash 复制代码
      conda activate ml_env
    • macOS/Linux 上:

      bash 复制代码
      source activate ml_env
  4. 安装基础机器学习库:

    bash 复制代码
    conda install numpy pandas matplotlib scikit-learn
    • 如需学习深度学习,可添加 TensorFlow 或 PyTorch:

      bash 复制代码
      conda install tensorflow
      # 或
      conda install pytorch torchvision torchaudio -c pytorch

4. 在 PyCharm 中配置虚拟环境

  1. 打开 PyCharm,创建一个新项目:
    • 进入 File > New Project
    • 选择项目位置。
  2. 设置项目的 Python 解释器为虚拟环境:
    • 进入 File > Settings (macOS 为 Preferences) > Project > Python Interpreter
    • 点击驱动图标,选择 Add Interpreter > Conda Environment > Existing Environment
    • 选择您虚拟环境中的 Python 执行文件:
      • Windows 上:C:\Users\YourUsername\Anaconda3\envs\ml_env\python.exe
      • macOS/Linux 上:~/anaconda3/envs/ml_env/bin/python
  3. 点击 OK 保存设置。

5. 写作并运行您的第一个 Python 文件

  1. 创建一个新的 Python 文件:

    • 右键 PyCharm 中项目面板上的项目文件夹。
    • 选择 New > Python File ,并为文件命名,如 first_ml_script.py
  2. 在文件中写入一个简单脚本:

    python 复制代码
    import numpy as np
    import pandas as pd
    from sklearn.linear_model import LinearRegression
    
    # 示例数据
    X = np.array([[1], [2], [3], [4], [5]])
    y = np.array([1, 4, 9, 16, 25])
    
    # 线性回归模型
    model = LinearRegression()
    model.fit(X, y)
    
    print("模型系数:", model.coef_)
    print("模型截距:", model.intercept_)
  3. 运行脚本:

    • 在项目面板中右键文件,选择 Run 'first_ml_script'
    • 或者点击右上角的绿色跑按钮。

6. 验证您的环境

  • 如果设置正确,您应该能在 PyCharm 的输出面板中看到脚本的输出。

  • 示例输出:

    复制代码
    模型系数: [6.]
    模型截距: -7.0

恭喜您!您已成功安装 PyCharm 和 Anaconda,创建了一个用于机器学习的虚拟环境,并运行了第一个 Python 文件!

相关推荐
好开心啊没烦恼9 分钟前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
清幽竹客14 分钟前
Day 3:Python模块化、异常处理与包管理实战案例
python
菜包eo1 小时前
二维码驱动的独立站视频集成方案
网络·python·音视频
Yo_Becky1 小时前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
yzx9910132 小时前
关于网络协议
网络·人工智能·python·网络协议
fangeqin2 小时前
ubuntu源码安装python3.13遇到Could not build the ssl module!解决方法
linux·python·ubuntu·openssl
martian6652 小时前
支持向量机(SVM)深度解析:从数学根基到工程实践
算法·机器学习·支持向量机
Jay Kay2 小时前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio2 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و3 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘