ROS2+OpenCV综合应用--8. 视觉巡线自动驾驶

1、程序功能说明

程序启动后,调整摄像头的俯仰角,把摄像头往下掰动,使得摄像头可以看到线,然后点击图像窗口,按下r 键进选色模式;接着在在画面中的线的区域内,框出所需要巡线的颜色,松开鼠标后会自动加载处理后的图像;最后按下空格键开启巡线功能。小车在运行过程中,遇到障碍物会停下并且蜂鸣器会响。

2、程序启动

2.1、启动命令

打开一个终端输入以下指令进入docker,

./docker_ros2.sh

出现以下界面就是进入docker成功

启动底盘

ros2 launch yahboomcar_bringup bringup.launch.py

再新开一个终端,进入同一个docker,以下的 da8c4f47020a 修改成实际终端显示的ID

docker ps

docker exec -it da8c4f47020a /bin/bash

进入docker容器后,终端输入,

ros2 run yahboomcar_astra follow_line

以巡黄线为例,

按下r键后,如上图选择蓝线区域,选定后松开鼠标,

如上图所示,右边显示的就是处理后的图像,它会显示黄线部分。然后按下空格键则开始计算速度,小车巡线自动驾驶。

2.2、动态参数调节

可以通过动态参数器可以调节相关参数,docker终端输入,

ros2 run rqt_reconfigure rqt_reconfigure

可调节的参数有,

参数 说明
Kp PID的P值
Ki PID的I值
Kd PID的D值
scale PID调节比例系数
linear 线速度大小
ResponseDist 避障检测距离
refresh 刷新参数按钮

3、核心代码

我们先梳理下巡线的实现原理,通过

  • 计算巡线的中心坐标与图像中心的偏移量,
  • 根据坐标偏移量计算出角速度的值,
  • 发布速度驱动小车。

计算中心坐标,

#计算hsv值

rgb_img, self.hsv_range = self.color.Roi_hsv(rgb_img, self.Roi_init)

#计算self.circle,计算出X的坐标、半径值。半径值为0说明没有检测到线,则发布停车信息

rgb_img, binary, self.circle = self.color.line_follow(rgb_img, self.hsv_range)

计算出角速度的值,

#320是中心点的X坐标的值,通过得到的图像的X值与320的偏差,可以计算出"我现在距离中心有多远",然后计算角速度的值

z_Pid, _\] = self.PID_controller.update(\[(point_x - 320)\*1.0/16, 0\])

相关推荐
__lost31 分钟前
MATLAB画出3d的常见复杂有机分子和矿物的分子结构
开发语言·人工智能·matlab·化学·分子结构
每天都要写算法(努力版)35 分钟前
【神经网络与深度学习】五折交叉验证(5-Fold Cross-Validation)
人工智能·深度学习·神经网络
郭不耐1 小时前
DeepSeek智能时空数据分析(六):大模型NL2SQL绘制城市之间连线
人工智能·数据分析·时序数据库·数据可视化·deepseek
winfredzhang2 小时前
Deepseek 生成新玩法:从文本到可下载 Word 文档?思路与实践
人工智能·word·deepseek
KY_chenzhao2 小时前
ChatGPT与DeepSeek在科研论文撰写中的整体科研流程与案例解析
人工智能·机器学习·chatgpt·论文·科研·deepseek
不爱吃于先生3 小时前
生成对抗网络(Generative Adversarial Nets,GAN)
人工智能·神经网络·生成对抗网络
cxr8283 小时前
基于Playwright的浏览器自动化MCP服务
人工智能·自动化·大语言模型·mcp
PPIO派欧云3 小时前
PPIO X OWL:一键开启任务自动化的高效革命
运维·人工智能·自动化·github·api·教程·ppio派欧云
奋斗者1号3 小时前
数值数据标准化:机器学习中的关键预处理技术
人工智能·机器学习
kyle~3 小时前
深度学习---框架流程
人工智能·深度学习