ROS2+OpenCV综合应用--8. 视觉巡线自动驾驶

1、程序功能说明

程序启动后,调整摄像头的俯仰角,把摄像头往下掰动,使得摄像头可以看到线,然后点击图像窗口,按下r 键进选色模式;接着在在画面中的线的区域内,框出所需要巡线的颜色,松开鼠标后会自动加载处理后的图像;最后按下空格键开启巡线功能。小车在运行过程中,遇到障碍物会停下并且蜂鸣器会响。

2、程序启动

2.1、启动命令

打开一个终端输入以下指令进入docker,

./docker_ros2.sh

出现以下界面就是进入docker成功

启动底盘

ros2 launch yahboomcar_bringup bringup.launch.py

再新开一个终端,进入同一个docker,以下的 da8c4f47020a 修改成实际终端显示的ID

docker ps

docker exec -it da8c4f47020a /bin/bash

进入docker容器后,终端输入,

ros2 run yahboomcar_astra follow_line

以巡黄线为例,

按下r键后,如上图选择蓝线区域,选定后松开鼠标,

如上图所示,右边显示的就是处理后的图像,它会显示黄线部分。然后按下空格键则开始计算速度,小车巡线自动驾驶。

2.2、动态参数调节

可以通过动态参数器可以调节相关参数,docker终端输入,

ros2 run rqt_reconfigure rqt_reconfigure

可调节的参数有,

参数 说明
Kp PID的P值
Ki PID的I值
Kd PID的D值
scale PID调节比例系数
linear 线速度大小
ResponseDist 避障检测距离
refresh 刷新参数按钮

3、核心代码

我们先梳理下巡线的实现原理,通过

  • 计算巡线的中心坐标与图像中心的偏移量,
  • 根据坐标偏移量计算出角速度的值,
  • 发布速度驱动小车。

计算中心坐标,

#计算hsv值

rgb_img, self.hsv_range = self.color.Roi_hsv(rgb_img, self.Roi_init)

#计算self.circle,计算出X的坐标、半径值。半径值为0说明没有检测到线,则发布停车信息

rgb_img, binary, self.circle = self.color.line_follow(rgb_img, self.hsv_range)

计算出角速度的值,

#320是中心点的X坐标的值,通过得到的图像的X值与320的偏差,可以计算出"我现在距离中心有多远",然后计算角速度的值

z_Pid, _\] = self.PID_controller.update(\[(point_x - 320)\*1.0/16, 0\])

相关推荐
IT古董17 小时前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(3)基于BiseNet算法的工业缺陷分割实战:数据读取、模型搭建、训练与测试
人工智能·计算机视觉·制造
放羊郎17 小时前
基于RTAB-Map和RRT的自主导航方案
人工智能·数码相机·计算机视觉
从零开始学习人工智能19 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发19 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu12320 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一1 天前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
ACP广源盛139246256731 天前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超1 天前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶1 天前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309161 天前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习