【机器学习】 卷积神经网络 (CNN)

文章目录

    • [1. 为什么需要 CNN](#1. 为什么需要 CNN)
    • [2. CNN 的架构](#2. CNN 的架构)
    • [3. 卷积层](#3. 卷积层)
    • [4. 池化层](#4. 池化层)
    • [5. CNN 的应用](#5. CNN 的应用)

1. 为什么需要 CNN

  • 前提:利用前置知识,去掉全连接神经网络中的部分参数,提升学习效率。
  • 本质:在 DNN 之前加上 CNN,先去除不必要的参数,再进入 DNN。
  • 常用于图片识别
    • 对图像特征的局部性(稀疏连接)和平移不变性(参数共享)进行处理。
    • 分层特征提取:从低级到高级,捕获图片中的复杂结构。
    • 池化层:降维,减少参数量。

2. CNN 的架构

  1. 特征1(卷积层)

    • 检测局部图案,不需要查看整张图。
    • 满足稀疏连接特性。
  2. 特征2(卷积层)

    • 对不同位置相同的图案,使用相同的参数(Filter)。
    • 满足参数共享特性。
  3. 特征3(池化层)

    • 通过抽样将图片缩小,保留最重要的特征,且不影响最终结构。

3. 卷积层

  • 总体功能:卷积层用于特征提取,通过稀疏连接和权值共享,将输入图像与滤波器进行卷积操作,得到多个特征图

卷积核

  • 特点:过滤器,相当于 DNN 中的神经元,卷积核就是 CNN 中的神经元。

  • 作用:检查图像中是否存在某些图案。

  • 优点:

    • 满足特征1:可以只检测局部区域。
    • 满足特征2:不同位置的图案共享同一卷积核。
  • 注意:卷积核的尺寸会根据输入图像的维度进行调整。

    • 例如:若输入图像维度为 1,卷积核为 3×3,若图像维度为 25,卷积核变为 25×3×3。
  • 通常情况下,多个不同的卷积核被用于构建过滤器,每个卷积核提取不同的特征。

特征映射

  • 过程:卷积核滑动并与图像局部进行卷积操作,得到特征图。
  • 注:卷积后的特征映射维度与卷积核的数量相关,而与当前图像维度无关。
    • 示例:输入 28×28×3,卷积核 3×3×3,核数为 5,步幅 1 → 输出为 26×26×5。

改进

  • 问题:同一个卷积核处理不同大小的图案较为困难。
  • 解决方案:在 CNN 前加一层进行图像加工(如缩小、旋转等处理)。

4. 池化层

功能

  • 池化层将卷积层输出划分为多个区域,从每个区域中提取最大值或平均值,从而减少图像尺寸,同时保持图像特性。
  • 保持平移、伸缩、旋转不变性。
  • 减少参数量,提升模型的泛化能力。

Flatten

  • 过程:池化层操作后,将提取到的特征平铺,输入到 DNN 层进行深度学习。

池化类型

  • 平均池化:对每个区域取平均值,保留整体信息。
  • 最大池化:对每个区域取最大值,提取最显著的特征。

5. CNN 的应用

  1. AlphaGo

    • 只使用了卷积层,不使用池化层。
  2. 语音识别

    • 将语音转为频谱图,卷积核仅在纵坐标(频率)方向上移动,而不在时间序列方向上移动。其他模型用于处理时间序列部分。
  3. 文字处理

    • 卷积网络的核心是捕捉局部特征。在文本处理中,若干单词组成的滑动窗口就构成了局部特征。
    • 对特征进行组合和筛选,获取不同层次的语义信息。
    • 只在时间方向上使用卷积,因为不同维度的文字意义是相互独立的。
相关推荐
buttonupAI5 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876486 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
曹文杰15190301126 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄6 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把6 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL6 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很7 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里7 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631297 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛117 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai