文献阅读分享:强化学习与大语言模型结合的推荐系统LEA

标题 期刊 年份
Reinforcement Learning-based Recommender Systems with Large Language Models for State Reward and Action Modeling ACM Symposium on Neural Gaze Detection 2024

🌟 研究背景

在信息过载的时代,推荐系统(RS)成为连接用户与相关内容的桥梁。尤其是基于序列的推荐(Sequential Recommendation),在音乐和视频流媒体服务中显得尤为重要。然而,现有的基于强化学习(RL)的推荐方法在利用历史用户-项目互动数据时,面临如何有效模拟用户反馈的挑战。本文提出了一种利用大型语言模型(LLMs)作为环境(LE)的方法,以增强基于RL的推荐系统。

🔍 相关工作

在推荐系统的研究中,已有工作通过门控循环单元(GRU)、卷积神经网络(CNN)和Transformer等模型进行序列推荐。这些模型主要依赖于监督学习,而自监督强化学习(SSRL)则通过训练RL代理来满足用户期望。然而,如何构建一个提供有意义用户反馈的高质量环境,仍是一个未解决的问题。

🚀 方法介绍

本文的核心在于将LLMs作为环境(LE)来模拟用户行为并为RL推荐系统提供反馈。具体方法如下:

  1. 状态模型(SM):通过对比用户-项目标记交互与正负动作,学习有效的状态表示。
  2. 奖励模型(RM):通过奖励提示,基于用户-项目标记交互和特定动作生成奖励分数。
  3. 正反馈增强(LEA):通过提示LE选择潜在的正反馈,增强有限的离线训练数据。

📊 模型图输入输出转变

模型的输入是用户-项目互动序列,输出是针对每个用户的下一个可能互动的项目。状态模型(SM)将用户的历史互动转换为丰富的状态表示,而奖励模型(RM)则根据这些状态和动作预测奖励。LEA方法进一步通过预测正反馈来增强训练数据。

🧪 实验

实验在两个公开数据集上进行:LFM和Industry。通过比较LEA与传统的RL框架(如SNQN和SA2C),我们发现LEA在多个指标上均显示出优越性。特别是,当结合状态和奖励模型时,性能提升最为显著。

🌈 创新点

  • LLMs作为环境(LE):首次将LLMs应用于模拟用户行为和提供反馈,增强RL推荐系统。
  • 正反馈增强(LEA):提出一种新的方法,通过预测正反馈来丰富离线训练数据,提高模型的泛化能力。
  • 参数效率:通过适配器和指令提示,实现了对LLMs的高效微调,无需大幅增加计算资源。
相关推荐
学历真的很重要11 分钟前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
IT=>小脑虎11 分钟前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
黄焖鸡能干四碗21 分钟前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
世岩清上28 分钟前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生1 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域1 小时前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi9878381 小时前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi1 小时前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗1 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm