【数据仓库】spark大数据处理框架

文章目录

概述

Spark是一个性能优异的集群计算框架,广泛应用于大数据领域。类似Hadoop,但对Hadoop做了优化,计算任务的中间结果可以存储在内存中,不需要每次都写入HDFS,更适用于需要迭代运算的算法场景中。

Spark专注于数据的处理分析,而数据的存储还是要借助于Hadoop分布式文件系统HDFS等来实现。

大数据问题场景包含以下三种:

  • 复杂的批量数据处理
  • 基于历史数据的交互式查询
  • 基于实时数据流的数据处理

Spark技术栈基本可以解决以上三种场景问题。

架构

1 spark Core :spark的核心模块,是spark运行基础。以RDD为数据抽象,提供python、java、scala、R语言的api,可以通过RDD编程进行海量离线数据批处理计算。

2 Spark SQL:基于Spark Core,提供结构化数据处理功能。可以使用SQL语言对数据进行处理,可用于离线计算场景。同时基于Spark SQL提供了StructuredStreaming模块,可以使用时SQL进行流式计算。

3 sparkStreaming : 以Spark Core为基础,提供数据的流式计算功能

4 MLlib:以spark Core为基础,进行机器学习计算,内置大量机器学习库和API算法等。

5 Graphx:以spark Core为基础,进行图计算,提供大量图计算的API,方便以分布式资源进行图计算。

6 spark底层的文件存储还是基于hdfs分布式文件系统,支持多种部署方式。

spark 架构角色

从两个层面理解:

资源管理层面:(典型的Master-Worker架构)

管理者:即Master角色,只能有一个

​ 工作者:即Worker角色,可以有多个。一个worker在一个分布式节点上,监测当前节点的资源状况,向master节点汇总。

任务执行层面:

​ 某任务管理者:Driver角色,一个任务只能有一个

​ 某任务执行者:Executor角色,可以有多个

在特殊场景下(local模式),Driver即是管理者又是执行者

下载

下载地址:

http://spark.apache.org/downloads.html

或者

https://archive.apache.org/dist/spark/

选择合适自己的版本下载。

Spark2.X预编译了Scala2.11(Spark2.4.2预编译Scala2.12)

Spark3.0+预编译了Scala2.12

该教程选择Spark3.2.1版本,其中预编译了Hadoop3.2和Scala2.13,对应的包是 spark-3.2.1-bin-hadoop3.2-scala2.13.tgz,但这里的预编译Hadoop不是指不需要再安装Hadoop。

linux 服务器上下载地址

wget https://archive.apache.org/dist/spark/spark-3.2.1/spark-3.2.1-bin-hadoop3.2-scala2.13.tgz

安装

Spark的安装部署支持三种模式,

local本地模式(单机):启动一个JVM Process进程,通过其内部的多个线程来模拟整个spark运行时各个角色。一个进程里有多个线程。

Local[N]:可以使用N个线程,一个线程利用一个cpu核,通常cpu有几个核,就指定几个线程,最大化利用计算能力;
Local[*],按照cpu核数设置线程数;

standalone模式(集群):各个角色以独立进程的形式存在,并组成spark集群

​ spark on YARN模式(集群):各个角色运行在yarn的容器内部,组成集群环境

​ kubernetes 模式(容器集群):各个角色运行在kubernetes 容器内部,组成集群环境

本文将只介绍 本地Local模式,其它模式将会在后续文章中进行介绍。

该文的安装环境为centos7。

1、将下载的包上传到服务器指定目录,解压

[root@localhost softnew]# tar zxvf spark-3.1.2-bin-hadoop3.2.tgz
# 修改目录
mv spark-3.1.2-bin-hadoop3.2 spark-3.1.2

2、修改配置文件

修改/etc/profile文件,新增spark环境变量:

 # Spark Environment Variables
 export SPARK_HOME=/home/bigData/softnew/spark
 export PATH=$PATH:$SPARK_HOME/bin

修改完成后记得执行 source /etc/profile 使其生效

启动pyspark

​ pyspark 是spark集成python后,可以使用python 脚本编写spark 数据 批处理计算。pyspark提供了一个shell窗口。

./pyspark

[root@yd-ss bin]# ./pyspark
Python 3.10.10 (main, Dec 26 2024, 22:46:13) [GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
Type "help", "copyright", "credits" or "license" for more information.
24/12/27 10:46:44 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 10:46:44 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.server2.active.passive.ha.enable does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.exec.default.charset does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.exec.default.national.charset does not exist
24/12/27 10:46:46 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.2.1
      /_/

Using Python version 3.10.10 (main, Dec 26 2024 22:46:13)
Spark context Web UI available at http://sc:4040
Spark context available as 'sc' (master = local[*], app id = local-1735267609271).
SparkSession available as 'spark'.
>>>

进入窗口,即可使用python 写RDD编程代码了。

同时,可以通过web ui 在4040端口访问,查看spark 任务执行情况。

执行如下计算任务

sc.parallelize([1,2,3,4,5]).map(lambda x:x*10).collect()

访问localhost:4040

可以看到job清单,这个job,起了24个线程去处理计算。 由于跑任务的服务器是24核的,执行./pyspark 默认以local[*]最大线程去启动。

可以看到任务层面,启动了一个driver,由于是local模式,所以driver即是管理者也是执行者。

可以在pyspark-shell下利用spark做一些简单开发任务;

下面修改启动命令:

# 该local模式启动2个线程
./pyspark --master local[2]

再次执行

sc.parallelize([1,2,3,4,5]).map(lambda x:x*10).collect()

可以看到这个job只用了2个线程来处理计算。

还可以利用该shell处理其他计算任务,也就是说一个shell 启动起来,是可以处理多个任务的,但只要关闭窗口,shell就会关闭。就不能再处理任务了。

通过shell 总是不便,后续将介绍通过pycharm进行RDD计算任务编写。

退出shell脚本

quit()或者ctrl + D

启动spark-sehll

./spark-shell

可以看到如下信息:

[root@yd-ss bin]# ./spark-shell
24/12/27 11:11:50 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 11:11:50 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.2.1
      /_/

Using Scala version 2.13.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_201)
Type in expressions to have them evaluated.
Type :help for more information.
24/12/27 11:12:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://sc:4040
Spark context available as 'sc' (master = local[*], app id = local-1735269126553).
Spark session available as 'spark'.

scala>

这个是要使用scala语言编写,其他跟pyspark类似。

启动spark-sql

./spark-sql

可以看到如下:

[root@yd-ss bin]# ./spark-sql
24/12/27 11:14:28 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 11:14:28 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/12/27 11:14:29 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.server2.active.passive.ha.enable does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.exec.default.charset does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.exec.default.national.charset does not exist
Spark master: local[*], Application Id: local-1735269273943
spark-sql>

可以看到这个是依赖hive数仓配置的。spark-sql是没有元数据管理的,所以需要跟hive集成,利用其元数据管理功能。后续将详细介绍。

spark-submit

该工具是用来提交写好的计算脚本,到saprk上去执行,执行完成即结束。和前面的shell不一样,shell只要没关闭,就可以一直执行的。

# 执行spark自带的python示例,计算pi的值(8次迭代)
./spark-submit /home/spark/spark-3.2.1/examples/src/main/python/pi.py 8

该脚本,会基于spark启动一个driver,执行pi.py计算,然后打开web ui 4040监控接口,执行完成后输出结果,最后关闭driver,关闭web ui。

是个一次性的任务执行。

经验

1 spark 功能比较强大,使用方式也很丰富,初步学习只需要了解自己使用方式即可;

2 spark local模式使用配置是比较简单的,基本是开箱即用;

相关推荐
熟透的蜗牛24 分钟前
大数据技术(八)—— HBase数据读写流程和Api的使用
大数据·数据库·hbase
俊哥大数据1 小时前
【制造业】大数据一站式解决方案
大数据
泰迪智能科技0110 小时前
“云梦乘风起,数智继风华”丨2024韩山师范学院数学与统计学院大数据方向企业微专业结业典礼圆满结束
大数据
jiuweiC10 小时前
spark环境搭建
spark
GIS数据转换器11 小时前
低空经济新动力:无人机航测技术的普及与应用
大数据·人工智能·物联网·无人机·智慧城市
武子康11 小时前
大数据-266 实时数仓 - Canal 对接 Kafka 客户端测试
java·大数据·数据仓库·分布式·kafka
lisacumt11 小时前
【flink-cdc】flink-cdc 3版本debug启动pipeline任务,mysql-doris
大数据·mysql·flink
heheha_zj11 小时前
Flume拦截器的实现
大数据·flume
橙子 chen12 小时前
工具函数 - 调用http
java·大数据·网络·数据库·python·网络协议·http
weixin_3077791312 小时前
AWS EMR基础知识
大数据·spark·云计算