jrc水体分类对水体二值掩码修正

使用deepwatermap生成的水体二值掩码中有部分区域由于被云挡住无法识别,造成水体不连续是使用jrc离线数据进行修正,jrc数据下载连接如下:https://global-surface-water.appspot.com/download

选择指定区域的数据集合下载如图:

使用开源项目deepwatermap生成tiff格式的水体二值掩码图(需要把原本的png水体图进行转成tiff格式使用gdal把原始的坐标迁移过去)弄好之后开始对水体中非连续的水体使用jrc文件补全。

修正的代码如下:

import numpy as np
import rioxarray as rxr
from rasterio.enums import Resampling


def update_water_classification(target_path, output_path, water_threshold=2.5,
                                jrc_path='occurrence_90E_30Nv1_4_2021.tif'):
    # 加载目标影像(含水体掩膜)
    ZB_target = rxr.open_rasterio(target_path, masked=True).squeeze()

    # 加载JRC水体发生频率数据作为ZB
    ZB = rxr.open_rasterio(jrc_path, masked=True).squeeze()

    # 将ZB重新投影到目标影像的CRS,并重采样以匹配空间分辨率
    ZB_resampled = ZB.rio.reproject_match(ZB_target, resampling=Resampling.bilinear)
    #生成临时文件 仅用来测试jrc是否依据水体掩码进行重采样到相同大小
    # ZB_resampled = genTempTiffFile(ZB_resampled)

    # 创建一个新的掩码用于保存更新后的数据
    updated_mask = ZB_target.copy()  # 复制原始掩码作为基础

    # 找出需要更新的非水体像素位置(即值为0的位置)
    non_water_pixels = ZB_target.values == 0

    # 更新非水体区域:如果对应的ZB_resampled值大于等于water_threshold,则设为1(水体)
    # 使用布尔索引避免在同一数组上读写
    updated_mask.values[non_water_pixels] = np.where(
        ZB_resampled.values[non_water_pixels] >= water_threshold,
        1,
        0
    )

    # 保存最终结果
    updated_mask.rio.to_raster(output_path)
    print("Process completed.")


def genTempTiffFile(ZB_resampled):
    # 保存重采样后的JRC数据到临时文件
    # 设置一个新的数据类型和默认的nodata值
    new_dtype = 'float32'  # 或者其他适当的数据类型
    if np.issubdtype(new_dtype, np.floating):
        default_nodata = -9999.0  # 浮点类型的默认nodata值
    else:
        default_nodata = np.iinfo(new_dtype).min  # 整数类型的默认nodata值
    # 确保nodata值在新的数据类型范围内
    if 'nodata' in ZB_resampled.attrs:
        original_nodata = ZB_resampled.attrs['nodata']
        if not np.issubdtype(type(original_nodata), np.number) or not (
                np.iinfo(new_dtype).min <= original_nodata <= np.iinfo(new_dtype).max):
            print(
                f"Warning: nodata value {original_nodata} out of range for dtype {new_dtype}. Adjusting nodata value.")
            original_nodata = default_nodata
    else:
        original_nodata = default_nodata
        print("No nodata value found. Using default nodata value.")
    # 设置新的nodata值并转换数据类型
    ZB_resampled = ZB_resampled.rio.write_nodata(original_nodata)
    ZB_resampled = ZB_resampled.astype(new_dtype)
    ZB_resampled.rio.to_raster("resampled_jrc.tiff", dtype=new_dtype, nodata=original_nodata)
    print(f"Resampled JRC data saved to resampled_jrc")
    return ZB_resampled


# if __name__ == '__main__':
#     jrc_file = "occurrence_90E_30Nv1_4_2021.tif"
#     target_tiff = "D:/s2/L2A_T46RFS_A026142_20220309T042244_merged_cropped_binary_watermask.tiff"
#     output_tiff = target_tiff.replace('_merged_cropped_binary_watermask.tiff',
#                                       '_merged_cropped_binary_watermask_jrc.tiff')
#     update_water_classification(target_tiff, output_tiff)
#     print("影像处理完成并已保存")

在此记录一下!希望可以帮到需要的朋友!

相关推荐
是阿静呀11 分钟前
新手学习yolov8目标检测小记2--对比实验中经典模型库MMDetection使用方法(使用自己的数据集训练,并转换为yolo格式评价指标)
python·学习·yolo·目标检测
老大白菜1 小时前
Python 实现 冒泡排序算法示例
数据结构·python·算法
爱上python的猴子2 小时前
用python编写一个放烟花的小程序
开发语言·python·pygame
B站计算机毕业设计超人2 小时前
计算机毕业设计PyHive+Hadoop深圳共享单车预测系统 共享单车数据分析可视化大屏 共享单车爬虫 共享单车数据仓库 机器学习 深度学习
大数据·hadoop·python·深度学习·机器学习·数据分析·数据可视化
Edward-tan3 小时前
【玩转全栈】----Django连接MySQL
python·mysql·django
油头少年_w3 小时前
Python数据容器
python
有杨既安然3 小时前
Python爬虫入门指南:从零开始抓取数据
开发语言·爬虫·python·信息可视化·数据分析·excel
Grovvy_Deng4 小时前
使用rust加速python的tgz解压
开发语言·python·rust
Tiandaren4 小时前
医学图像分析工具02:3D Slicer || 医学影像可视化与分析工具 支持第三方插件
c++·人工智能·python·深度学习·3d·开源
EnochChen_4 小时前
PyTorch快速入门教程【小土堆】之Sequential使用和小实战
人工智能·pytorch·python