动态规划解决整数拆分问题

代码随想录链接:代码随想录

思路:

(1).确定dp数组的含义:

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]

(2).确定递推公式:

dp[i]最大乘积是怎么得到:

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是**j * (i - j)**直接相乘。

一个是j * dp[i - j] ,相当于是拆分(i - j)

**因此递推公式为:**dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j))

注意这里在确定dp[i]时从1到i遍历j时更新dp[i]需要比较三个内容,分别是原始的dp[i],j*(i-j)以及j*dp[i-j],取这三个数的最大值更新dp[i]

(3).初始化dp数组:

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值

只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议

(4).确定遍历顺序:

遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]

枚举j的时候,是从1开始的,从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的

但是j的遍历只需要遍历到i/2(包含)就可以,后面就没有必要遍历

Java代码:

java 复制代码
class Solution {
    public int integerBreak(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[] dp = new int[n+1];
        dp[2] = 1;
        for(int i = 3; i <= n; i++) {
            for(int j = 1; j <= i/2; j++) {
                // 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
                dp[i] = Math.max(dp[i], Math.max(j*(i-j), j*dp[i-j]));
                // j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }
}
相关推荐
.柒宇.5 小时前
力扣hot100----15.三数之和(java版)
java·数据结构·算法·leetcode
杰克尼7 小时前
二分查找为什么总是写错
java·数据结构·算法
程序员阿鹏9 小时前
56.合并区间
java·数据结构·算法·leetcode
古译汉书11 小时前
Stm32江科大入门教程--各章节详细笔记---查阅传送门
数据结构·stm32·单片机·嵌入式硬件·算法
Jasmine_llq12 小时前
《P2656 采蘑菇》
算法·强连通分量·广度优先搜索(bfs)·tarjan 算法·图的缩点操作·有向无环图(dag)·最长路径
芥子沫13 小时前
《人工智能基础》[算法篇3]:决策树
人工智能·算法·决策树
mit6.82413 小时前
dfs|位运算
算法
苏纪云13 小时前
算法<C++>——双指针 | 滑动窗口
数据结构·c++·算法·双指针·滑动窗口
保持低旋律节奏13 小时前
算法——二叉树、dfs、bfs、适配器、队列练习
算法·深度优先·宽度优先