使用Python和OpenCV进行视觉图像分割

简介🎁

在图像处理领域,图像分割是一项基础且关键的技术,它涉及到将图像划分为若干个具有特定属性的区域。本文将通过一个实践项目,展示如何使用Python编程语言,结合OpenCV库,对一张玫瑰花的图片进行图像分割。这个项目不仅能够帮助我们理解图像分割的基本概念,还能够提供一个实际的编程示例。

0dayNu1L-CSDN博客

目录

简介🎁

环境准备🚚

项目步骤💂‍♀️

一:选取样本区域

二:计算标准差

三:建立模板图像空间

四:根据模板图像空间分割原图像

显示结果🥘

[完整代码 🍠](#完整代码 🍠)

结论💢


环境准备🚚

在开始之前,请确保你的开发环境中已经安装了Python、NumPy、Matplotlib以及OpenCV(即skimageio模块)。这些库可以通过pip进行安装。

项目步骤💂‍♀️

一:选取样本区域

首先,我们从图像中选取一个区域作为样本。在这个例子中,我们选择了图像中心的一个正方形区域。

python 复制代码
from skimage import data, io
import numpy as np

# 读取图像
image = io.imread('flower.jpg')

# 选取样本区域
height, width, _ = image.shape
roi_size = 100  # 样本区域的边长
roi_center_x = width // 2
roi_center_y = height // 2
roi = image[roi_center_y - roi_size//2:roi_center_y + roi_size//2,
             roi_center_x - roi_size//2:roi_center_x + roi_size//2]

二:计算标准差

接下来,我们计算所选区域红色通道的标准差,这将用于后续的图像分割。

python 复制代码
# 提取红色通道并计算标准差
red_channel = roi[:, :, 0]
mean_value = np.mean(red_channel)
std_dev = np.std(red_channel)

三:建立模板图像空间

基于计算出的标准差,我们建立一个模板图像空间,用于区分图像中的不同区域。

python 复制代码
# 建立模板图像空间
template_image = np.zeros_like(image, dtype='uint8')
for y in range(height):
    for x in range(width):
        if abs(image[y, x, 0] - mean_value) <= std_dev:
            template_image[y, x] = image[y, x]
        else:
            template_image[y, x] = [0, 0, 0]  # 将不符合条件的像素设置为黑色

四:根据模板图像空间分割原图像

最后,我们使用模板图像空间来分割原始图像,得到最终的分割结果。

python 复制代码
# 分割原图像
segmented_image = np.where(template_image != 0, image, 0)

显示结果🥘

使用Matplotlib库,我们可以将原始图像、模板图像以及分割后的图像展示出来,以便进行比较。

python 复制代码
from matplotlib import pyplot as plt

# 显示结果
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.title('Original Image')
plt.imshow(image)
plt.axis('off')

plt.subplot(1, 3, 2)
plt.title('Template Image')
plt.imshow(template_image)
plt.axis('off')

plt.subplot(1, 3, 3)
plt.title('Segmented Image')
plt.imshow(segmented_image)
plt.axis('off')

plt.show()

完整代码 🍠

python 复制代码
from skimage import data, io
from matplotlib import pyplot as plt
import numpy as np
import math

# 读取图像
image = io.imread(r'flower.jpg')

# 一:选取样本区域
# 假设我们选取图像中心的一个正方形区域作为样本区域
height, width, _ = image.shape
roi_size = 100  # 样本区域的边长
roi_center_x = width // 2
roi_center_y = height // 2
roi = image[roi_center_y - roi_size//2:roi_center_y + roi_size//2,
            roi_center_x - roi_size//2:roi_center_x + roi_size//2]

# 提取红色通道
red_channel = roi[:, :, 0]

# 二:计算标准差
mean_value = np.mean(red_channel)
std_dev = np.std(red_channel)

# 三:建立模板图像空间
r1_d = std_dev
template_image = np.zeros_like(image, dtype='uint8')
for y in range(height):
    for x in range(width):
        if abs(image[y, x, 0] - mean_value) <= r1_d:
            template_image[y, x] = image[y, x]
        else:
            template_image[y, x] = [0, 0, 0]  # 将不符合条件的像素设置为黑色

# 四:根据模板图像空间分割原图像
segmented_image = np.where(template_image != 0, image, 0)

# 显示结果
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.title('Original Image')
plt.imshow(image)
plt.axis('off')

plt.subplot(1, 3, 2)
plt.title('Template Image')
plt.imshow(template_image)
plt.axis('off')

plt.subplot(1, 3, 3)
plt.title('Segmented Image')
plt.imshow(segmented_image)
plt.axis('off')

plt.show()

结论💢

通过这个项目,我们学习了如何使用Python和OpenCV进行图像分割。这个过程涉及到了样本区域的选择、标准差的计算、模板图像空间的建立以及最终的图像分割。这个技术在许多领域都有广泛的应用,比如医学影像分析、自动驾驶车辆的视觉系统等。希望这个项目能够为你提供一些启发和帮助。

相关推荐
guygg888 分钟前
5G PDSCH信道吞吐量MATLAB仿真实现(含信道生成与解调)
开发语言·5g·matlab
抠头专注python环境配置12 分钟前
基于Python与深度学习的智能垃圾分类系统设计与实现
pytorch·python·深度学习·分类·垃圾分类·vgg·densenet
愈努力俞幸运30 分钟前
flask 入门 token, headers,cookie
后端·python·flask
傻乐u兔40 分钟前
C语音初阶————调试实用技巧2
c语言·开发语言
梦想是成为算法高手42 分钟前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
用什么都重名43 分钟前
Conda 虚拟环境安装配置路径详解
windows·python·conda
阿也在北京1 小时前
基于Neo4j和TuGraph的知识图谱与问答系统搭建——胡歌的导演演员人际圈
python·阿里云·知识图谱·neo4j
计算机徐师兄1 小时前
Python基于知识图谱的胆囊炎医疗问答系统(附源码,文档说明)
python·知识图谱·胆囊炎医疗问答系统·python胆囊炎医疗问答系统·知识图谱的胆囊炎医疗问答系统·python知识图谱·医疗问答系统
北冥码鲲1 小时前
【保姆级教程】从零入手:Python + Neo4j 构建你的第一个知识图谱
python·知识图谱·neo4j