Large-Vision-Language-Models-LVLMs--info:deepseek-vl模型

LVLMs-info: Deepseek-VL

  • deepseek-vl
    • paper: https://arxiv.org/abs/2403.05525, code: https://github.com/deepseek-ai/DeepSeek-VL
    • 模型基本结构:基本和Qwen-VL一样,三部分,a hybrid vision encoder, a vision adaptor, and a language model(LLM)
      • hybrid vision encoder
        • 使用SigLIP处理低分辨率的图像(384x384), SAM-B处理高分辨率图像(1024x1024),分别能够得到hxwxD的feature map
      • vision adaptor
        • 处理由hybrid vision encoder送过来的feature map
        • 具体来说,先将feature map上采用2倍并输入两层卷积,随后将feature map拉直,得到NxD维特征(类似token),在论文中每个feature map处理后都得到576x1024的token,最后将两种token在通道维度拼接得到576x2048的visual token
        • 最后使用一层GELU+MLP做embedding,作为LLM的输入
      • LLM
        • 使用DeepSeek LLM,包括1B和7B
    • 训练阶段:和Qwen-VL一样分为三个阶段训练
      • stage 1: Training VL Adaptor
        • 对vision adaptor进行训练,其他部分均frozen,相当于固定视觉和文本编码器,训练两者的融合模块。这里有一点可以关注,VLA的参数量很少,scaling law几乎无效,甚至会起到反作用,因此在这个阶段没有用很多数据进行调整
      • stage 2: Joint VL Pre-training
        • 对除了hybrid vision encoder外的所有参数进行调整,主要用来训练模型的多模态能力。在这个阶段需要谨慎的控制好用于训练的text-image和text数据的比率,否则会造成模型的language能力下降
      • stage 3: Supervised Finetuning
        • 全参数调整(但frozen SAM-B,显存限制)
    • 数据部分:通常的处理,划分为pretraining dataset和fine-tuning dataset
      • pretraining dataset主要由一些比较杂的数据构成(论文table 1),主要参与训练的stage1
      • fine-tuning dataset数据比较干净,包括LAION等,主要参与训练的stage3
      • 两者共同参与训练的stage2
    • 重要的点(个人)
      • 高质量图像数据(1024x1024), hybrid vision encoder
      • modality warm-up,逐步增加text-image数据,初始保持纯text数据在训练过程中占主导,防止模型language能力出现degradation问题
      • 论文中的性能对比上,基本能干过当时的开源LVLMs,但和GPT4-v有差距
相关推荐
超龄超能程序猿1 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊1 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼1 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
生态遥感监测笔记1 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
天天扭码1 小时前
从图片到语音:我是如何用两大模型API打造沉浸式英语学习工具的
前端·人工智能·github
张彦峰ZYF2 小时前
从检索到生成:RAG 如何重构大模型的知识边界?
人工智能·ai·aigc
刘海东刘海东2 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
**梯度已爆炸**2 小时前
NLP文本预处理
人工智能·深度学习·nlp
uncle_ll2 小时前
李宏毅NLP-8-语音模型
人工智能·自然语言处理·语音识别·语音模型·lm
Liudef062 小时前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc