Large-Vision-Language-Models-LVLMs--info:deepseek-vl模型

LVLMs-info: Deepseek-VL

  • deepseek-vl
    • paper: https://arxiv.org/abs/2403.05525, code: https://github.com/deepseek-ai/DeepSeek-VL
    • 模型基本结构:基本和Qwen-VL一样,三部分,a hybrid vision encoder, a vision adaptor, and a language model(LLM)
      • hybrid vision encoder
        • 使用SigLIP处理低分辨率的图像(384x384), SAM-B处理高分辨率图像(1024x1024),分别能够得到hxwxD的feature map
      • vision adaptor
        • 处理由hybrid vision encoder送过来的feature map
        • 具体来说,先将feature map上采用2倍并输入两层卷积,随后将feature map拉直,得到NxD维特征(类似token),在论文中每个feature map处理后都得到576x1024的token,最后将两种token在通道维度拼接得到576x2048的visual token
        • 最后使用一层GELU+MLP做embedding,作为LLM的输入
      • LLM
        • 使用DeepSeek LLM,包括1B和7B
    • 训练阶段:和Qwen-VL一样分为三个阶段训练
      • stage 1: Training VL Adaptor
        • 对vision adaptor进行训练,其他部分均frozen,相当于固定视觉和文本编码器,训练两者的融合模块。这里有一点可以关注,VLA的参数量很少,scaling law几乎无效,甚至会起到反作用,因此在这个阶段没有用很多数据进行调整
      • stage 2: Joint VL Pre-training
        • 对除了hybrid vision encoder外的所有参数进行调整,主要用来训练模型的多模态能力。在这个阶段需要谨慎的控制好用于训练的text-image和text数据的比率,否则会造成模型的language能力下降
      • stage 3: Supervised Finetuning
        • 全参数调整(但frozen SAM-B,显存限制)
    • 数据部分:通常的处理,划分为pretraining dataset和fine-tuning dataset
      • pretraining dataset主要由一些比较杂的数据构成(论文table 1),主要参与训练的stage1
      • fine-tuning dataset数据比较干净,包括LAION等,主要参与训练的stage3
      • 两者共同参与训练的stage2
    • 重要的点(个人)
      • 高质量图像数据(1024x1024), hybrid vision encoder
      • modality warm-up,逐步增加text-image数据,初始保持纯text数据在训练过程中占主导,防止模型language能力出现degradation问题
      • 论文中的性能对比上,基本能干过当时的开源LVLMs,但和GPT4-v有差距
相关推荐
仙人掌_lz2 分钟前
AI代理记忆设计指南:从单一特征到完整系统,打造可靠智能体
人工智能
昨日之日20069 分钟前
Qwen3-TTS - 一句话指挥AI配音 自由定制你的专属声音 十种语言随心说 支持50系显卡 一键整合包下载
人工智能
创客匠人老蒋13 分钟前
AI赋能创始人表达:从个人智慧到组织能力的战略跃迁
人工智能·创始人ip·创客匠人
搞科研的小刘选手17 分钟前
【数字经济专题会议】第三届粤港澳大湾区数字经济与人工智能国际学术会议(DEAI 2026)
人工智能·aigc·软件工程·电子商务·数字经济·经济学·学术会议
星爷AG I22 分钟前
9-12 场景感知(AGI基础理论)
人工智能·agi
lyx494922 分钟前
Open Interpreter + 智谱GLM-4:零基础搭建能操控电脑的 AI Agent
人工智能·agent·ai本地助手
wjykp37 分钟前
6.频谱分析和时谱分析
人工智能·机器学习
方见华Richard40 分钟前
方见华:在递归的暗夜里,把自己活成一束光
人工智能·经验分享·笔记·学习方法·空间计算
黑客-雨1 小时前
DeepSeek-V3.2深度拆解:开源模型逆袭,GPT-5迎来劲敌!
人工智能·程序员·大模型·知识图谱·agent·大模型教程·deepseek-v3.2
lixzest1 小时前
PyTorch基础知识简述
人工智能·pytorch·python