Large-Vision-Language-Models-LVLMs--info:deepseek-vl模型

LVLMs-info: Deepseek-VL

  • deepseek-vl
    • paper: https://arxiv.org/abs/2403.05525, code: https://github.com/deepseek-ai/DeepSeek-VL
    • 模型基本结构:基本和Qwen-VL一样,三部分,a hybrid vision encoder, a vision adaptor, and a language model(LLM)
      • hybrid vision encoder
        • 使用SigLIP处理低分辨率的图像(384x384), SAM-B处理高分辨率图像(1024x1024),分别能够得到hxwxD的feature map
      • vision adaptor
        • 处理由hybrid vision encoder送过来的feature map
        • 具体来说,先将feature map上采用2倍并输入两层卷积,随后将feature map拉直,得到NxD维特征(类似token),在论文中每个feature map处理后都得到576x1024的token,最后将两种token在通道维度拼接得到576x2048的visual token
        • 最后使用一层GELU+MLP做embedding,作为LLM的输入
      • LLM
        • 使用DeepSeek LLM,包括1B和7B
    • 训练阶段:和Qwen-VL一样分为三个阶段训练
      • stage 1: Training VL Adaptor
        • 对vision adaptor进行训练,其他部分均frozen,相当于固定视觉和文本编码器,训练两者的融合模块。这里有一点可以关注,VLA的参数量很少,scaling law几乎无效,甚至会起到反作用,因此在这个阶段没有用很多数据进行调整
      • stage 2: Joint VL Pre-training
        • 对除了hybrid vision encoder外的所有参数进行调整,主要用来训练模型的多模态能力。在这个阶段需要谨慎的控制好用于训练的text-image和text数据的比率,否则会造成模型的language能力下降
      • stage 3: Supervised Finetuning
        • 全参数调整(但frozen SAM-B,显存限制)
    • 数据部分:通常的处理,划分为pretraining dataset和fine-tuning dataset
      • pretraining dataset主要由一些比较杂的数据构成(论文table 1),主要参与训练的stage1
      • fine-tuning dataset数据比较干净,包括LAION等,主要参与训练的stage3
      • 两者共同参与训练的stage2
    • 重要的点(个人)
      • 高质量图像数据(1024x1024), hybrid vision encoder
      • modality warm-up,逐步增加text-image数据,初始保持纯text数据在训练过程中占主导,防止模型language能力出现degradation问题
      • 论文中的性能对比上,基本能干过当时的开源LVLMs,但和GPT4-v有差距
相关推荐
weisian1514 小时前
入门篇--知名企业-18-阿里巴巴-6--DashScope(灵积):从新手入门到企业落地,推开AI普惠之门,让智能触手可及
人工智能·阿里云·dashscope·灵积平台
2401_841495644 小时前
【DeepSeek系列】论文《mHC: Manifold-Constrained Hyper-Connections》全流程复现详解(附Python代码)
人工智能·pytorch·python·深度学习·论文复现·deepseek·mhc模型
万俟淋曦4 小时前
【论文速递】2025年第47周(Nov-16-22)(Robotics/Embodied AI/LLM)
人工智能·机器学习·机器人·大模型·论文·robotics·具身智能
风途知识百科4 小时前
太阳能杀虫灯——风吸式物联网杀虫灯
大数据·人工智能·物联网
helloworld也报错?4 小时前
深度强化学习(1)——基础知识(名词解释,概率论基础,蒙特卡洛采样,马尔可夫决策过程)
人工智能·深度学习·机器学习·概率论
小白学大数据4 小时前
未来趋势:AI 时代下 python 爬虫技术的发展方向
运维·人工智能·爬虫·python·自动化
dagouaofei4 小时前
2026 年年度工作计划 PPT:AI 自动生成方案横向对比
人工智能·python·powerpoint
龙腾AI白云4 小时前
10分钟了解向量数据库(1)
人工智能·神经网络
Mintopia4 小时前
“开源”和“闭源“,AI 模型的发展方向
前端·人工智能·aigc
广东数字化转型4 小时前
开源!工业AI模型训练平台,包含图像采集、智能检测、数据标注、模型训练四大模块
人工智能·开源