简洁安装配置在Windows环境下使用vscode开发pytorch

简洁安装配置在Windows环境下使用vscode开发pytorch

使用anaconda安装pytorch,通过vscode集成环境开发pytorch

下载 anaconda

  1. 下载网址,选择对应系统的版本 https://repo.anaconda.com/archive/
    windows可以选择Anaconda3-2024.10-1-Windows-x86_64.exe
  2. 检查 conda 是否安装成功
    conda --version
  3. 升级 conda
    conda update conda
    添加镜像源
bash 复制代码
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/

查看已经添加的channels

bash 复制代码
conda config --get channels
  1. 安装conda完成 配置安装Python虚拟环境
bash 复制代码
conda create --name py311 python=3.11
conda activate py311
  1. 使用命令检查配置环境
bash 复制代码
conda env list 

安装pytorch conda install pytorch

  1. 直接执行
    安装pytorch,它默认安装的是cpu版本的pytorch。
bash 复制代码
conda install pytorch 

要安装很多插件,需要等一段时间

配置vs code 的pytorch的开发环境

  • 安装如下插件

  1. 测试pytorch是否正确安装

    新建一个扩展名为py的文件,代码如下:

    bash 复制代码
    import torch
    
    # 检查是否可以使用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # 创建一个简单的张量
    x = torch.tensor([1.0, 2.0, 3.0], device=device)
    print(f"Tensor x: {x}")
    
    # 创建y张量
    y = torch.tensor([4.0, 5.0, 6.0], device=device)
    print(f"Tensor : {y}")
    # 张量加法
    z = x + y
    print(f"Tensor z (x + y): {z}")
    
    # 张量乘法
    w = x * y
    print(f"Tensor w (x * y): {w}")
  2. 运行py文件,右下角选择py311环境

  3. 输出如下使用CPU的环境

bash 复制代码
Using device: cpu
Tensor x: tensor([1., 2., 3.])
Tensor : tensor([4., 5., 6.])
Tensor z (x + y): tensor([5., 7., 9.])
Tensor w (x * y): tensor([ 4., 10., 18.])
相关推荐
李少兄18 分钟前
Java 基本数据类型 vs 包装类(引用数据类型)
java·开发语言·python
拓端研究室TRL25 分钟前
Python贝叶斯分层模型专题|对环境健康、医学心梗患者、体育赛事数据空间异质性实证分析合集|附数据代码
开发语言·python
伏颜.4 小时前
Dify实现自然语言生成SQL并执行
python·dify
Studying 开龙wu4 小时前
机器学习模型部署:使用Flask 库的 Python Web 框架将XGBoost模型部署在服务器上(简单小模型)从模型训练到部署再到本地调用
python·机器学习·flask
Bruce_Liuxiaowei4 小时前
基于Flask的智能天气助手系统设计
后端·python·flask
nenchoumi31196 小时前
Pytorch学习笔记(十二)Learning PyTorch - NLP from Scratch
pytorch·笔记·学习
蹦蹦跳跳真可爱5896 小时前
Python----计算机视觉处理(Opencv:直方图均衡化)
人工智能·python·opencv·计算机视觉
胡耀超6 小时前
7.模型选择与评估:构建科学的参数调优与性能评估体系——Python数据挖掘代码实践
开发语言·人工智能·python·机器学习·数据挖掘
my_realmy7 小时前
蓝桥杯真题_小蓝和小桥的讨论
java·python·算法·职场和发展·蓝桥杯·intellij-idea
带娃的IT创业者7 小时前
《Python实战进阶》No37: 强化学习入门:Q-Learning 与 DQN-加餐版1 Q-Learning算法可视化
python·算法·pygame