LangChain4j与Elasticsearch:构建高效的语义嵌入存储

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

一、LangChain4j与Elasticsearch集成概述

1.1 LangChain4j简介

LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与多个LLM提供商、嵌入存储、嵌入模型等的集成,支持文本和图像输入,以及AI服务的高级API。

1.2 Elasticsearch在LangChain4j中的作用

Elasticsearch是一个基于Lucene的搜索引擎,提供了全文搜索和分析功能。在LangChain4j中,Elasticsearch被用作嵌入存储,用于存储和检索语义嵌入向量,从而提高搜索和检索的效率。

二、Elasticsearch作为嵌入存储的集成

2.1 为什么选择Elasticsearch

LangChain4j提供了内存嵌入存储,但对于更大的数据集,内存存储不适用,因为服务器内存有限。Elasticsearch的"弹性"特性使其能够根据数据量进行扩展,因此,将嵌入存储到Elasticsearch中是一个理想的选择。

2.2 添加Elasticsearch依赖

要在项目中集成Elasticsearch,需要添加以下Maven依赖:

复制代码
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-elasticsearch</artifactId>
    <version>${langchain4j.version}</version>
</dependency>
<dependency>
    <groupId>org.testcontainers</groupId>
    <artifactId>elasticsearch</artifactId>
    <version>1.20.1</version>
    <scope>test</scope>
</dependency>

这些依赖包括LangChain4j的Elasticsearch集成模块和TestContainers模块,后者用于在测试中启动Elasticsearch实例。

三、配置和使用Elasticsearch嵌入存储

3.1 启动Elasticsearch容器

使用TestContainers模块启动Elasticsearch实例:

复制代码
ElasticsearchContainer container =
    new ElasticsearchContainer("docker.elastic.co/elasticsearch/elasticsearch:8.15.0")
        .withPassword("changeme");
container.start();
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials("elastic", "changeme"));
client = RestClient.builder(HttpHost.create("https://" + container.getHttpHostAddress()))
    .setHttpClientConfigCallback(httpClientBuilder -> {
        httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
        httpClientBuilder.setSSLContext(container.createSslContextFromCa());
        return httpClientBuilder;
    })
    .build();
client.performRequest(new Request("GET", "/"));

这段代码创建并启动了一个Elasticsearch容器,并配置了客户端以连接到该容器。

3.2 使用Elasticsearch作为嵌入存储

将Elasticsearch设置为LangChain4j的嵌入存储:

复制代码
EmbeddingStore<TextSegment> embeddingStore =
    ElasticsearchEmbeddingStore.builder()
        .restClient(client)
        .build();
embeddingStore.add(response1.content(), game1);
embeddingStore.add(response2.content(), game2);

这段代码将向量存储在Elasticsearch的默认索引中。也可以指定一个更有意义的索引名称:

复制代码
EmbeddingStore<TextSegment> embeddingStore =
    ElasticsearchEmbeddingStore.builder()
        .indexName("games")
        .restClient(client)
        .build();
embeddingStore.add(response1.content(), game1);
embeddingStore.add(response2.content(), game2);

四、搜索相似向量

4.1 向量化查询

要搜索相似向量,首先需要使用模型将查询转换为向量表示:

复制代码
String question = "I want to pilot a car";
Embedding questionAsVector = model.embed(question).content();

4.2 执行相似性搜索

使用嵌入存储执行相似性搜索:

复制代码
EmbeddingSearchResult<TextSegment> result = embeddingStore.search(
    EmbeddingSearchRequest.builder()
        .queryEmbedding(questionAsVector)
        .build());

这段代码在Elasticsearch中搜索与查询向量相似的向量。

五、总结

LangChain4j与Elasticsearch的集成提供了一个强大的解决方案,用于处理和检索语义嵌入向量。通过将Elasticsearch作为嵌入存储,可以有效地扩展处理大数据集的能力,并提高搜索相关性。这种方法结合了LangChain4j的灵活性和Elasticsearch的可扩展性,为构建高效的语义搜索应用提供了坚实的基础。

相关推荐
小池先生7 分钟前
服务请求出现偶发超时问题,经查服务本身没问题,问题出现在nginx转发。
运维·服务器·nginx
java_logo15 分钟前
vllm-openai Docker 部署手册
运维·人工智能·docker·ai·容器
MANONGMN26 分钟前
Linux 通配符与正则表达式(含实战案例+避坑指南)
linux·运维·正则表达式
勤源科技1 小时前
运维知识图谱的构建与应用
运维·人工智能·知识图谱
jiyuzzz1 小时前
Docker部署WordPress及相关配置
运维·docker·容器
会写代码的饭桶2 小时前
Jenkins 实现 Vue 项目自动化构建与远程服务器部署
vue.js·自动化·jenkins
还不秃顶的计科生3 小时前
linux下conda未安装的解决方法(离线安装linux下的conda)
linux·运维·服务器
爱学习饼4 小时前
CentOS下安装配置JDK24和tomcat11
linux·运维·centos
Super Rookie4 小时前
Tomcat 自动化脚本安装方案
运维·tomcat·自动化
qinxue7224 小时前
Jenkins自动化配置--CICD流水线
运维·自动化·jenkins