AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务

要在 AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务,可按以下步骤进行操作:

1. 环境准备

首先,确保的环境中已经安装了 PyTorch 及其依赖项。如果尚未安装,可以通过以下步骤进行安装:

  • 安装 Anaconda(如果尚未安装):

    bash 复制代码
    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    bash Anaconda3-2023.07-1-Linux-x86_64.sh

    在安装过程中,接受协议并指定安装目录(例如 /share/home/yourname/apps/anaconda3).

  • 创建并激活 Conda 环境

    bash 复制代码
    conda create -n pytorch_env python=3.8
    conda activate pytorch_env
  • 安装 PyTorch

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

    确保 cudatoolkit 的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).

2. 编写提交脚本

创建一个脚本来提交的 PyTorch 训练作业。以下是一个基本的提交脚本示例:

bash 复制代码
#!/bin/bash
#BSUB -q gpu_v100 # 指定使用 gpu_v100 队列
#BSUB -J pytorch_job # 定义作业名
#BSUB -gpu "num=1" # 定义使用 1 块 GPU
#BSUB -n 4 # 定义任务数(例如使用 4 个 CPU 核心)
#BSUB -o %J.out # 定义输出文件名
#BSUB -e %J.err # 定义错误输出文件名

# 加载环境变量
module load cuda/10.0
source /share/home/yourname/apps/anaconda3/bin/activate pytorch_env

# 运行 PyTorch 训练脚本
python /path/to/your/training_script.py

3. 提交作业

将上述脚本保存为一个文件,例如 submit_pytorch.sh,然后使用 bsub 命令提交作业:

bash 复制代码
bsub < submit_pytorch.sh

4. 监控作业

可以使用以下命令来监控作业的状态:

  • 查看作业队列:

    bash 复制代码
    bjobs
  • 查看作业的详细信息:

    bash 复制代码
    bpeek <job_id>
相关推荐
GIS小天9 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.020 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉030724 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻1 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901061 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
云卓SKYDROID2 小时前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID2 小时前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力3 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人3 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法3 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉