AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务

要在 AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务,可按以下步骤进行操作:

1. 环境准备

首先,确保的环境中已经安装了 PyTorch 及其依赖项。如果尚未安装,可以通过以下步骤进行安装:

  • 安装 Anaconda(如果尚未安装):

    bash 复制代码
    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    bash Anaconda3-2023.07-1-Linux-x86_64.sh

    在安装过程中,接受协议并指定安装目录(例如 /share/home/yourname/apps/anaconda3).

  • 创建并激活 Conda 环境

    bash 复制代码
    conda create -n pytorch_env python=3.8
    conda activate pytorch_env
  • 安装 PyTorch

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

    确保 cudatoolkit 的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).

2. 编写提交脚本

创建一个脚本来提交的 PyTorch 训练作业。以下是一个基本的提交脚本示例:

bash 复制代码
#!/bin/bash
#BSUB -q gpu_v100 # 指定使用 gpu_v100 队列
#BSUB -J pytorch_job # 定义作业名
#BSUB -gpu "num=1" # 定义使用 1 块 GPU
#BSUB -n 4 # 定义任务数(例如使用 4 个 CPU 核心)
#BSUB -o %J.out # 定义输出文件名
#BSUB -e %J.err # 定义错误输出文件名

# 加载环境变量
module load cuda/10.0
source /share/home/yourname/apps/anaconda3/bin/activate pytorch_env

# 运行 PyTorch 训练脚本
python /path/to/your/training_script.py

3. 提交作业

将上述脚本保存为一个文件,例如 submit_pytorch.sh,然后使用 bsub 命令提交作业:

bash 复制代码
bsub < submit_pytorch.sh

4. 监控作业

可以使用以下命令来监控作业的状态:

  • 查看作业队列:

    bash 复制代码
    bjobs
  • 查看作业的详细信息:

    bash 复制代码
    bpeek <job_id>
相关推荐
JY190641067 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习
IT_陈寒8 小时前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8028 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智8 小时前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
szxinmai主板定制专家10 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan11 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交11 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc14 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen14 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室14 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文