AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务

要在 AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务,可按以下步骤进行操作:

1. 环境准备

首先,确保的环境中已经安装了 PyTorch 及其依赖项。如果尚未安装,可以通过以下步骤进行安装:

  • 安装 Anaconda(如果尚未安装):

    bash 复制代码
    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    bash Anaconda3-2023.07-1-Linux-x86_64.sh

    在安装过程中,接受协议并指定安装目录(例如 /share/home/yourname/apps/anaconda3).

  • 创建并激活 Conda 环境

    bash 复制代码
    conda create -n pytorch_env python=3.8
    conda activate pytorch_env
  • 安装 PyTorch

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

    确保 cudatoolkit 的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).

2. 编写提交脚本

创建一个脚本来提交的 PyTorch 训练作业。以下是一个基本的提交脚本示例:

bash 复制代码
#!/bin/bash
#BSUB -q gpu_v100 # 指定使用 gpu_v100 队列
#BSUB -J pytorch_job # 定义作业名
#BSUB -gpu "num=1" # 定义使用 1 块 GPU
#BSUB -n 4 # 定义任务数(例如使用 4 个 CPU 核心)
#BSUB -o %J.out # 定义输出文件名
#BSUB -e %J.err # 定义错误输出文件名

# 加载环境变量
module load cuda/10.0
source /share/home/yourname/apps/anaconda3/bin/activate pytorch_env

# 运行 PyTorch 训练脚本
python /path/to/your/training_script.py

3. 提交作业

将上述脚本保存为一个文件,例如 submit_pytorch.sh,然后使用 bsub 命令提交作业:

bash 复制代码
bsub < submit_pytorch.sh

4. 监控作业

可以使用以下命令来监控作业的状态:

  • 查看作业队列:

    bash 复制代码
    bjobs
  • 查看作业的详细信息:

    bash 复制代码
    bpeek <job_id>
相关推荐
桂花饼几秒前
字节Seedream-4.5架构揭秘:当AI开始拥有“版式推理”能力,CISAN与DLE引擎如何重构多图生成?
人工智能·aigc·idea·sora2 api·gemini 3 pro·claude opus 4.5·doubao-seedream
Mr.Lee jack1 分钟前
【torch.compile】TorchFX图捕获技术
pytorch
哥布林学者5 分钟前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识 课后习题和代码代码实践
深度学习·ai
whaosoft-1439 分钟前
51c视觉~合集55
人工智能
AI营销快线12 分钟前
2025年AI营销内容生产革命:成本减半,效率倍增的关键
人工智能
正在走向自律15 分钟前
AiOnly平台x FastGPT:一键调用Gemini 3 Pro系列模型从零构建AI工作流
大数据·数据库·人工智能·aionly·nano banana pro·gemini 3 pro
沃斯堡&蓝鸟21 分钟前
DAY22 推断聚类后簇的类型
人工智能·机器学习·聚类
老蒋新思维22 分钟前
创客匠人 2025 万人峰会实录:AI 智能体重构创始人 IP 变现逻辑 —— 从 0 到年入千万的实战路径
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
这张生成的图像能检测吗25 分钟前
(论文速读)MoE-Adapters++: 过动态混合专家适配器实现更有效的视觉语言模型的持续学习
人工智能·自然语言处理·视觉语言模型·持续学习
数字冰雹27 分钟前
数字孪生如何重塑数据中心运维新范式
大数据·人工智能