AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务

要在 AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务,可按以下步骤进行操作:

1. 环境准备

首先,确保的环境中已经安装了 PyTorch 及其依赖项。如果尚未安装,可以通过以下步骤进行安装:

  • 安装 Anaconda(如果尚未安装):

    bash 复制代码
    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    bash Anaconda3-2023.07-1-Linux-x86_64.sh

    在安装过程中,接受协议并指定安装目录(例如 /share/home/yourname/apps/anaconda3).

  • 创建并激活 Conda 环境

    bash 复制代码
    conda create -n pytorch_env python=3.8
    conda activate pytorch_env
  • 安装 PyTorch

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

    确保 cudatoolkit 的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).

2. 编写提交脚本

创建一个脚本来提交的 PyTorch 训练作业。以下是一个基本的提交脚本示例:

bash 复制代码
#!/bin/bash
#BSUB -q gpu_v100 # 指定使用 gpu_v100 队列
#BSUB -J pytorch_job # 定义作业名
#BSUB -gpu "num=1" # 定义使用 1 块 GPU
#BSUB -n 4 # 定义任务数(例如使用 4 个 CPU 核心)
#BSUB -o %J.out # 定义输出文件名
#BSUB -e %J.err # 定义错误输出文件名

# 加载环境变量
module load cuda/10.0
source /share/home/yourname/apps/anaconda3/bin/activate pytorch_env

# 运行 PyTorch 训练脚本
python /path/to/your/training_script.py

3. 提交作业

将上述脚本保存为一个文件,例如 submit_pytorch.sh,然后使用 bsub 命令提交作业:

bash 复制代码
bsub < submit_pytorch.sh

4. 监控作业

可以使用以下命令来监控作业的状态:

  • 查看作业队列:

    bash 复制代码
    bjobs
  • 查看作业的详细信息:

    bash 复制代码
    bpeek <job_id>
相关推荐
KarudoLee1 分钟前
AIGC7——AIGC驱动的视听内容定制化革命:从Sora到商业化落地
人工智能·aigc
Python之栈5 分钟前
PandasAI:当数据分析遇上自然语言处理
人工智能·python·数据分析·pandas
小杨4046 分钟前
python入门系列十三(多线程)
人工智能·python·pycharm
Z_W_H_11 分钟前
ArcGIS Pro/GeoScene Pro AI 助手 2.1
人工智能·arcgis·geoscene
意.远13 分钟前
在PyTorch中使用GPU加速:从基础操作到模型部署
人工智能·pytorch·python·深度学习
HelpHelp同学25 分钟前
信息混乱难查找?三步搭建高效帮助中心解决难题
大数据·人工智能·知识库管理系统
羑悻的小杀马特2 小时前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi5 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash6 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki6 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性