AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务

要在 AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务,可按以下步骤进行操作:

1. 环境准备

首先,确保的环境中已经安装了 PyTorch 及其依赖项。如果尚未安装,可以通过以下步骤进行安装:

  • 安装 Anaconda(如果尚未安装):

    bash 复制代码
    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    bash Anaconda3-2023.07-1-Linux-x86_64.sh

    在安装过程中,接受协议并指定安装目录(例如 /share/home/yourname/apps/anaconda3).

  • 创建并激活 Conda 环境

    bash 复制代码
    conda create -n pytorch_env python=3.8
    conda activate pytorch_env
  • 安装 PyTorch

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

    确保 cudatoolkit 的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).

2. 编写提交脚本

创建一个脚本来提交的 PyTorch 训练作业。以下是一个基本的提交脚本示例:

bash 复制代码
#!/bin/bash
#BSUB -q gpu_v100 # 指定使用 gpu_v100 队列
#BSUB -J pytorch_job # 定义作业名
#BSUB -gpu "num=1" # 定义使用 1 块 GPU
#BSUB -n 4 # 定义任务数(例如使用 4 个 CPU 核心)
#BSUB -o %J.out # 定义输出文件名
#BSUB -e %J.err # 定义错误输出文件名

# 加载环境变量
module load cuda/10.0
source /share/home/yourname/apps/anaconda3/bin/activate pytorch_env

# 运行 PyTorch 训练脚本
python /path/to/your/training_script.py

3. 提交作业

将上述脚本保存为一个文件,例如 submit_pytorch.sh,然后使用 bsub 命令提交作业:

bash 复制代码
bsub < submit_pytorch.sh

4. 监控作业

可以使用以下命令来监控作业的状态:

  • 查看作业队列:

    bash 复制代码
    bjobs
  • 查看作业的详细信息:

    bash 复制代码
    bpeek <job_id>
相关推荐
2401_897930061 小时前
tensorflow常用使用场景
人工智能·python·tensorflow
deepdata_cn2 小时前
开源混合专家大语言模型(DBRX)
人工智能·语言模型
deepdata_cn2 小时前
开源本地LLM推理引擎(Cortex AI)
人工智能·推理引擎
说私域3 小时前
“互联网 +”时代商业生态变革:以开源 AI 智能名片链动 2+1 模式 S2B2C 商城小程序为例
人工智能·小程序·开源
stbomei3 小时前
AI大模型如何重塑日常?从智能办公到生活服务的5个核心改变
人工智能
酷飞飞3 小时前
错误是ModuleNotFoundError: No module named ‘pip‘解决“找不到 pip”
人工智能·python·pip
点云SLAM4 小时前
PyTorch 中.backward() 详解使用
人工智能·pytorch·python·深度学习·算法·机器学习·机器人
androidstarjack4 小时前
波士顿动力给机器人装上AI大脑,人类故意使绊子也不怕了!
人工智能·机器人
Learn Beyond Limits5 小时前
Transfer Learning|迁移学习
人工智能·python·深度学习·神经网络·机器学习·ai·吴恩达
程序员三明治5 小时前
三、神经网络
人工智能·深度学习·神经网络