Spark的原理以及使用

一、spark集群的常见操作

启动spark集群

需要在各节点上首先启动zookeeper

zkServer.sh start

1、在主节点node1上spark目录下的sbin目录

2、执行./start-all.sh

3、使用jps和8080端口可以检查集群是否启动成功 http://node1:8080/

node1是Master,node1/node2/node3启动Worker进程

4、进入spark-shell查看是否正常

二、在Spark集群上提交应用

1、本地执行

val conf = new SparkConf().setAppName("TopN").setMaster("local");

val sc = new SparkContext(conf);

2、Idea提交集群执行

val conf = new SparkConf().setAppName("WordCount")

.setMaster("spark://node1:7077");

val sc = new SparkContext(conf);

sc.addJar("c:\\spark-wordcount-scala.jar"); // spark-submmit 集群上提交时,需要注释该行

val linesRdd = sc.textFile("hdfs://node1:9000/test/README.txt");

3、集群上执行

(1)在spark上执行

打包jar,只包含spark程序类,不要包含所有依赖类

#spark自己管理资源 Master:8080

#集群的各个节点都需要能访问到jar

各个节点都存在 /usr/local/spark-wordcount-scala.jar

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCountSpark \

--master spark://node10:7077 \

--driver-memory 5a00m \

--executor-memory 500m \

--executor-cores 1 \

/usr/local/spark-wordcount-scala.jar

(2)、在yarn上执行

#yarn调度资源 RM:8088

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCount \

--master yarn-cluster/yarn-client \

--num-executors 3 \

--driver-memory 500m \

--executor-memory 500m \

--executor-cores 3 \

/usr/local/spark/spark.jar

三、Spark集群的原理

1、spark的基本组件

Driver

Master

worker

Executor

Task

spark的每个CPU可创建2到4个分区

2、Spark的四种RDD操作

(1)transformation:转换,根据已有的RDD创建一个新的RDD

map

filter

flatMap

spark:groupByKey

spark:reduceByKey

sortByKey

join

cogroup

(2)action:行动,对RDD进行最后的操作

reduce

collect

count:元素的总个数

take(n)

top

saveAsTextFile

countByKey:各个Key的value的次数,Map[Key,次数]

countByValue:各个元素分别出现的次数,Map[元素,次数]

foreach 存储RDD到文件或数据库中,将操作结果转换为集合

action执行会自动执行之前的所有transformation操作

(3)集合类操作

creation:创建,两种方式创建RDD,一是集合,二是外部文件

(4)控制类

control:控制,RDD的持久化,放入缓存或磁盘

3、DAGScheduler划分stage算法

执行Action操作时,对该RDD创建一个stage

往前推,遇到宽依赖,再创建一个stage

相关推荐
CodeWithMe1 小时前
【Note】《Kafka: The Definitive Guide》第11章:Stream Processing
分布式·kafka
chevysky.cn2 小时前
Elasticsearch部署和集成
大数据·elasticsearch·jenkins
青云交3 小时前
Java 大视界 -- Java 大数据在智能医疗远程手术机器人操作数据记录与分析中的应用(342)
java·大数据·数据记录·远程手术机器人·基层医疗·跨院协作·弱网络适配
武子康4 小时前
大数据-38 Redis 分布式缓存 详细介绍 缓存、读写、旁路、穿透模式
大数据·redis·后端
时序数据说4 小时前
时序数据库的存储之道:从数据特性看技术要点
大数据·数据库·物联网·开源·时序数据库·iotdb
bxlj_jcj4 小时前
Flink时间窗口详解
大数据·flink
诗旸的技术记录与分享5 小时前
Flink-1.19.0源码详解-番外补充4-JobGraph图
大数据·flink
落霞的思绪5 小时前
使用云虚拟机搭建hadoop集群环境
大数据·hadoop·分布式