Spark的原理以及使用

一、spark集群的常见操作

启动spark集群

需要在各节点上首先启动zookeeper

zkServer.sh start

1、在主节点node1上spark目录下的sbin目录

2、执行./start-all.sh

3、使用jps和8080端口可以检查集群是否启动成功 http://node1:8080/

node1是Master,node1/node2/node3启动Worker进程

4、进入spark-shell查看是否正常

二、在Spark集群上提交应用

1、本地执行

val conf = new SparkConf().setAppName("TopN").setMaster("local");

val sc = new SparkContext(conf);

2、Idea提交集群执行

val conf = new SparkConf().setAppName("WordCount")

.setMaster("spark://node1:7077");

val sc = new SparkContext(conf);

sc.addJar("c:\\spark-wordcount-scala.jar"); // spark-submmit 集群上提交时,需要注释该行

val linesRdd = sc.textFile("hdfs://node1:9000/test/README.txt");

3、集群上执行

(1)在spark上执行

打包jar,只包含spark程序类,不要包含所有依赖类

#spark自己管理资源 Master:8080

#集群的各个节点都需要能访问到jar

各个节点都存在 /usr/local/spark-wordcount-scala.jar

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCountSpark \

--master spark://node10:7077 \

--driver-memory 5a00m \

--executor-memory 500m \

--executor-cores 1 \

/usr/local/spark-wordcount-scala.jar

(2)、在yarn上执行

#yarn调度资源 RM:8088

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCount \

--master yarn-cluster/yarn-client \

--num-executors 3 \

--driver-memory 500m \

--executor-memory 500m \

--executor-cores 3 \

/usr/local/spark/spark.jar

三、Spark集群的原理

1、spark的基本组件

Driver

Master

worker

Executor

Task

spark的每个CPU可创建2到4个分区

2、Spark的四种RDD操作

(1)transformation:转换,根据已有的RDD创建一个新的RDD

map

filter

flatMap

spark:groupByKey

spark:reduceByKey

sortByKey

join

cogroup

(2)action:行动,对RDD进行最后的操作

reduce

collect

count:元素的总个数

take(n)

top

saveAsTextFile

countByKey:各个Key的value的次数,Map[Key,次数]

countByValue:各个元素分别出现的次数,Map[元素,次数]

foreach 存储RDD到文件或数据库中,将操作结果转换为集合

action执行会自动执行之前的所有transformation操作

(3)集合类操作

creation:创建,两种方式创建RDD,一是集合,二是外部文件

(4)控制类

control:控制,RDD的持久化,放入缓存或磁盘

3、DAGScheduler划分stage算法

执行Action操作时,对该RDD创建一个stage

往前推,遇到宽依赖,再创建一个stage

相关推荐
档案宝档案管理20 小时前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
郑州光合科技余经理21 小时前
技术架构:上门服务APP海外版源码部署
java·大数据·开发语言·前端·架构·uni-app·php
云器科技21 小时前
告别Spark?大数据架构的十字路口与技术抉择
大数据·架构·spark·lakehouse·数据湖仓
小股虫1 天前
主流注册中心技术选型:CAP理论与业务实战的平衡艺术
分布式·微服务·架构
zhongerzixunshi1 天前
把握申报机遇 赋能高质量发展
大数据·人工智能
少许极端1 天前
Redis入门指南(五):从零到分布式缓存-其他类型及Java客户端操作redis
java·redis·分布式·缓存
AI数据皮皮侠1 天前
中国乡村旅游重点村镇数据
大数据·人工智能·python·深度学习·机器学习
小北方城市网1 天前
第 11 课:Python 全栈项目进阶与职业发展指南|从项目到职场的无缝衔接(课程终章・进阶篇)
大数据·开发语言·人工智能·python·数据库架构·geo
躺柒1 天前
读共生:4.0时代的人机关系06人机合作关系
大数据·人工智能·人机协作·人机对话·人机合作
天远数科1 天前
前端体验优化:用Node.js中间件无缝集成天远手机号码归属地核验服务
大数据·api