Spark的原理以及使用

一、spark集群的常见操作

启动spark集群

需要在各节点上首先启动zookeeper

zkServer.sh start

1、在主节点node1上spark目录下的sbin目录

2、执行./start-all.sh

3、使用jps和8080端口可以检查集群是否启动成功 http://node1:8080/

node1是Master,node1/node2/node3启动Worker进程

4、进入spark-shell查看是否正常

二、在Spark集群上提交应用

1、本地执行

val conf = new SparkConf().setAppName("TopN").setMaster("local");

val sc = new SparkContext(conf);

2、Idea提交集群执行

val conf = new SparkConf().setAppName("WordCount")

.setMaster("spark://node1:7077");

val sc = new SparkContext(conf);

sc.addJar("c:\\spark-wordcount-scala.jar"); // spark-submmit 集群上提交时,需要注释该行

val linesRdd = sc.textFile("hdfs://node1:9000/test/README.txt");

3、集群上执行

(1)在spark上执行

打包jar,只包含spark程序类,不要包含所有依赖类

#spark自己管理资源 Master:8080

#集群的各个节点都需要能访问到jar

各个节点都存在 /usr/local/spark-wordcount-scala.jar

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCountSpark \

--master spark://node10:7077 \

--driver-memory 5a00m \

--executor-memory 500m \

--executor-cores 1 \

/usr/local/spark-wordcount-scala.jar

(2)、在yarn上执行

#yarn调度资源 RM:8088

/usr/local/spark/bin/spark-submit \

--class com.aaa.spark.WordCount \

--master yarn-cluster/yarn-client \

--num-executors 3 \

--driver-memory 500m \

--executor-memory 500m \

--executor-cores 3 \

/usr/local/spark/spark.jar

三、Spark集群的原理

1、spark的基本组件

Driver

Master

worker

Executor

Task

spark的每个CPU可创建2到4个分区

2、Spark的四种RDD操作

(1)transformation:转换,根据已有的RDD创建一个新的RDD

map

filter

flatMap

spark:groupByKey

spark:reduceByKey

sortByKey

join

cogroup

(2)action:行动,对RDD进行最后的操作

reduce

collect

count:元素的总个数

take(n)

top

saveAsTextFile

countByKey:各个Key的value的次数,Map[Key,次数]

countByValue:各个元素分别出现的次数,Map[元素,次数]

foreach 存储RDD到文件或数据库中,将操作结果转换为集合

action执行会自动执行之前的所有transformation操作

(3)集合类操作

creation:创建,两种方式创建RDD,一是集合,二是外部文件

(4)控制类

control:控制,RDD的持久化,放入缓存或磁盘

3、DAGScheduler划分stage算法

执行Action操作时,对该RDD创建一个stage

往前推,遇到宽依赖,再创建一个stage

相关推荐
教男朋友学大模型5 分钟前
平衡AI自动化与人工干预
大数据·人工智能·自动化
Coder_Boy_22 分钟前
Java高级_资深_架构岗 核心知识点(模块三:高并发)
java·spring boot·分布式·面试·架构
每天要多喝水36 分钟前
zookeeper 的使用
分布式·zookeeper·云原生
渣瓦攻城狮1 小时前
互联网大厂Java面试实战:核心技术与场景分析
java·大数据·redis·spring·微服务·面试·技术分享
Elastic 中国社区官方博客1 小时前
Elasticsearch:通过最小分数确保语义精度
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
狮子座明仔2 小时前
DeepImageSearch:当图像检索需要“侦探式推理“,现有AI还差多远?
大数据·人工智能·语言模型
十月南城2 小时前
Kafka生态深化——Schema与Connect、CDC入湖的链路与一致性挑战
分布式·kafka
追风少年ii2 小时前
CosMx文献分享--空间同型聚类对癌细胞可塑性的抑制
大数据·数据挖掘·数据分析·空间·单细胞
2501_926978332 小时前
近10年中国社会发展路径总体视角图--双层架构的出现
大数据·人工智能
陈 洪 伟2 小时前
大模型推理引擎vLLM(10): vLLM 分布式推理源码结构解析
分布式·vllm