Spring Cloud Alibaba AI 入门与实践

一、概述

Spring AISpring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。

Spring Cloud Alibaba AI 是一个将 Spring Cloud 微服务生态与阿里巴巴 AI 能力无缝集成的框架,帮助开发者快速构建具备 AI 功能的现代化应用。本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个 在线聊天在线画图AI 应用。

二、主要特性和功能

Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1 版本 API 完成通义系列大模型的接入。通义接入是基于阿里云 阿里云百炼 服务;而 阿里云百炼 建立在 模型即服务(MaaS) 的理念基础之上,围绕 AI 各领域模型,通过标准化的 API 提供包括模型推理、模型微调训练在内的多种模型服务。

主要提供以下核心功能:

2.1. 简单易用的集成

通过 Spring Boot 风格的自动配置机制,开发者只需少量代码配置,即可快速接入阿里云的 AI 服务。

2.2. 丰富的 AI 服务支持

支持以下核心能力:

  • 自然语言处理(NLP):文本分析、智能问答、翻译。
  • 计算机视觉(CV):图像生成、图像识别、目标检测。
  • 语音处理:语音识别、语音合成。
  • 数据分析与预测:数据建模、趋势分析。

2.3. 高度扩展性

通过配置中心和注册中心(如 Nacos)实现动态扩展,支持微服务架构的扩展需求。

提供接口定义,方便接入第三方 AI 平台。

三、构建 AI 应用

Spring Cloud Alibaba AI 对 Java 版本有要求,所以需要提前预装好 Java 17 环境。

3.1. 申请 API-KEY

登录阿里云,进入 阿里云百炼 的页面:

java 复制代码
https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

3.2. 添加依赖

Spring Boot 项目的 pom.xml 中添加 alibaba-ai 依赖

xml 复制代码
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-ai</artifactId>
</dependency>

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

3.3. 配置 API-KEY

application.yml 中配置 Kafka 的相关属性,包括服务器地址、认证信息等。

yaml 复制代码
spring:
  cloud:
    ai:
      tongyi:
        connection:
          api-key: sk-xxxxxx
  • api-key 配置在阿里云百炼里申请的api-key

3.4. 创建模型调用服务

java 复制代码
@Service
@Slf4j
public class TongYiSimpleService {
    @Resource
    private TongYiChatModel chatClient;
    @Resource
    private TongYiImagesModel imageClient;

    public String chat(String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return chatClient.call(prompt).getResult().getOutput().getContent();
    }

    public String image(String message) {
        ImagePrompt prompt = new ImagePrompt(message);
        Image image = imageClient.call(prompt).getResult().getOutput();
        return image.getB64Json();
    }
}

聊天和图片的服务,分别通过注入 TongYiChatModelTongYiImagesModel 对象来实现,屏蔽底层通义大模型交互细节。

3.5. 创建controller

java 复制代码
@RestController
@RequestMapping("/ai")
public class TongYiController {
    @Resource
    private TongYiSimpleService tongYiSimpleService;

    @GetMapping("/chat")
    public String chat(@RequestParam(value = "message") String message) {
        return tongYiSimpleService.chat(message);
    }

    @GetMapping("/image")
    public ResponseEntity<byte[]> image(@RequestParam(value = "message") String message) {
        String b64Str = tongYiSimpleService.image(message);
        byte[] imageBytes = Base64.getDecoder().decode(b64Str);
        HttpHeaders headers = new HttpHeaders();
        headers.setContentType(MediaType.IMAGE_JPEG);
        return new ResponseEntity<>(imageBytes, headers, HttpStatus.OK);
    }
}

3.6. 测试效果

3.6.1. 聊天接口

在浏览器输入:http://localhost:8009/ai/chat?message=你是谁

3.6.2. 图片接口

在浏览器输入:http://localhost:8009/ai/image?message=意大利面拌42号混凝土

3.6.3. 搭配聊天页面

四、总结

当前版本的 Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,涵盖对话、文生图、文生语音等。在未来的版本中将继续推进 VectorStoreEmbeddingETL PipelineRAG 等更多 AI 应用开发场景的建设。

完整的样例代码下载:
https://gitee.com/zlt2000/spring-cloud-ai-sample

相关推荐
ankleless6 分钟前
Spring Boot 实战:从项目搭建到部署优化
java·spring boot·后端
野生技术架构师44 分钟前
2025年中高级后端开发Java岗八股文最新开源
java·开发语言
静若繁花_jingjing1 小时前
JVM常量池
java·开发语言·jvm
David爱编程2 小时前
为什么线程不是越多越好?一文讲透上下文切换成本
java·后端
A尘埃2 小时前
Redis在地理空间数据+实时数据分析中的具体应用场景
java·redis
csxin2 小时前
Spring Boot 中如何设置 serializer 的 TimeZone
java·后端
杨过过儿2 小时前
【Task02】:四步构建简单rag(第一章3节)
android·java·数据库
青云交2 小时前
Java 大视界 -- Java 大数据分布式计算在基因测序数据分析与精准医疗中的应用(400)
java·hadoop·spark·分布式计算·基因测序·java 大数据·精准医疗
荔枝爱编程2 小时前
如何在 Docker 容器中使用 Arthas 监控 Java 应用
java·后端·docker
喵手2 小时前
Java中Stream与集合框架的差异:如何通过Stream提升效率!
java·后端·java ee