力扣23.合并K个升序链表

文章目录

  • 一、前言
  • 二、最小堆解法
  • 三、分治解法

一、前言

23. 合并 K 个升序链表

本题的要求是把K个链表进行合并,合并后的链表必须是从小到大的。

并且这K个链表也是从小到大的升序链表。


二、最小堆解法

既然每个链表都是升序的,也就是从小到大的。

那么最后合并出来的链表的第一个节点,也肯定是K个链表的某个链表(记做first链表)第一个节点的其中一个。

合并之后的第二个节点,可以是其余链表的第一个节点或是first链表的第二个节点。

抓住这个规律,我们只需要每次收集每个链表的第一个节点,然后进行排序,取最小那个节点进行合并即可。

如果某个链表的第一个节点已经合并了,那么取第二个。如果第二个也合并了,那么取第三个。以此类推!

这里的话就可以考虑使用最小堆来完成这个排序工作,只需要把节点入堆,然后弹出堆中的最小堆即可。

思路如下:

  1. 初始化堆,将K个链表的第一个节点入堆
  2. 不断弹出最小堆,直到堆为空为止
    • 对弹出的节点进行合并,如果弹出节点的next不为空,继续将节点的next入堆
java 复制代码
public ListNode mergeKLists(ListNode[] lists) {
    PriorityQueue<ListNode> queue = new PriorityQueue<>((o1, o2) -> o1.val - o2.val);
    for (ListNode head : lists) {
        if (head != null){
            queue.add(head);
        }
    }

    ListNode head = new ListNode();
    ListNode p0 = head;
    while (!queue.isEmpty()){
        ListNode node = queue.poll();
        p0.next = node;
        p0 = p0.next;
        if (node.next != null){
            queue.add(node.next);
        }
    }
    return head.next;
}
  • 时间复杂度: O(nlog⁡k),其中n为链表总数,k为链表的数量。前面初始化堆的时间复杂度为O(k),合并链表的时候,从堆中取出最小堆的时间复杂度O(logk),链表总数为n,链表的所有节点都会放进堆中,因此从堆中取最小堆这个操作需要执行n次,因此时间复杂度为O(nlog⁡k)
  • 空间复杂度:O(k),堆中最多存放k个元素。

三、分治解法

分治的思路就是将一个问题拆分成多个子问题,最后将所有子问题进行合并,从而解决问题。

于是我们可以将k个链表分成两个部分,分别为前半部分链表和后半部分链表,先分别对前半部分链表和后半部分链表进行合并成两个升序的链表,然后对升序的两个链表进行合并。

要对前半部分链表和后半部分链表分别合并成两个升序链表,可以继续对这两部分链表进行拆分,一分为二,直到只有一个链表,那就不需要合并了。

因此需要用递归了解决问题

java 复制代码
public ListNode mergeKLists(ListNode[] lists) {
    return mergeKLists(lists, 0, lists.length);
}

private ListNode mergeKLists(ListNode[] lists, int i, int j) {
    int m = j - i;
    if (m == 0) {
        return null;
    }
    if (m == 1) {
        return lists[i];
    }
    ListNode left = mergeKLists(lists, i, i + m / 2);
    ListNode right = mergeKLists(lists, i + m / 2, j);
    return mergeKTwoLists(left, right);
}

private ListNode mergeKTwoLists(ListNode left, ListNode right) {
    ListNode head = new ListNode(-1, null);
    ListNode p0 = head;
    while (left != null && right != null) {
        if (left.val > right.val) {
            p0.next = right;
            right = right.next;
        } else {
            p0.next = left;
            left = left.next;
        }
        p0 = p0.next;
    }
    if (left != null){
        p0.next = left;
    }
    if (right != null){
        p0.next = right;
    }
    return head.next;
}
  • 时间复杂度:O(nlogk)。n为链表总数,k为链表数量。分治的时间复杂度为O(logk),每个节点都要参与一次合并,那么就是O(nlogk).
  • 空间复杂度:O(logk)。递归深度为 O(logk),需要用到 O(logk) 的栈空间。
相关推荐
啥都鼓捣的小yao2 分钟前
Python使用SVC算法解决乳腺癌数据集分类问题——寻找最佳核函数
python·算法·分类
程序猿大波43 分钟前
基于Java,SpringBoot,Vue,HTML高校社团信息管理系统设计
java·vue.js·spring boot
小李同学_LHY1 小时前
微服务架构中的精妙设计:环境和工程搭建
java·spring·微服务·springcloud
慕容魏1 小时前
面经分享,中科创达(安卓开发,二面挂)
java·开发语言
不辉放弃2 小时前
Java/Scala是什么
java·scala
Java版蜡笔小新2 小时前
算法-贪心算法
算法·贪心算法
LuckyAnJo2 小时前
Leetcode-100 回溯法-电话号码的字母组合
python·算法·leetcode
HR Zhou2 小时前
群体智能优化算法-鹈鹕优化算法(Pelican Optimization Algorithm, POA,含Matlab源代码)
算法·机器学习·matlab·优化·群体智能优化
喵手2 小时前
Java实现视频格式转换的完整指南:从FFmpeg到纯Java方案!
java·开发语言·ffmpeg
LuckyLay2 小时前
LeetCode算法题(Go语言实现)_20
算法·leetcode·职场和发展·golang