均值滤波从图像复原角度的解释

廖老师说若将图像生成看作一个随机过程,均值滤波(Mean Filtering)可以视为在高斯噪声模型下的线性最小均方估计(Linear Minimum Mean Squared Error, LMMSE)或者极大似然估计(Maximum Likelihood Estimation, MLE)的特例。这给均值滤波从图像增强上升到了图像复原的高度。但是条件很严格,一般都满足不了。从频率响应的角度分析,均值滤波不如高斯平滑

根据基于高斯噪声模型的信号去噪的结论,基于高斯噪声模型的最优估计是:

f ^ = 1 n ∑ i = 1 n g i \hat{f} = \frac{1}{n} \sum_{i=1}^n g_i f^=n1i=1∑ngi

这个假设条件是

  • 高斯噪声假设 :假设噪声是均值为 0、方差为 σ 2 \sigma^2 σ2的高斯噪声。
  • 独立同分布:假设每个像素值是独立同分布的。

若假设随机过程又是均值遍历的,则可用空间平均替换时间平均。空间平均是指在同一时刻对图像中不同位置的像素进行平均,而时间平均是指对同一位置的像素在不同时间点进行平均。

若用用空间平均替换时间平均,这正是均值滤波的定义。均值滤波通过计算局部区域内所有像素值的平均值来估计真实的信号值。

在实际应用中,独立同分布的条件就不满足,况且图像并不是遍历的,如果区域亮度不一致,那么空间平均可能会使图像中的边缘变得模糊。

相关推荐
carpell40 分钟前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
空中湖1 小时前
免费批量图片格式转换工具
图像处理·python·程序人生
Hero_HL17 小时前
Towards Open World Object Detection概述(论文)
人工智能·目标检测·计算机视觉
东皇太星17 小时前
SIFT算法详细原理与应用
图像处理·算法·计算机视觉
audyxiao00117 小时前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
..活宝..18 小时前
【Emgu CV教程】11.2、Scharr边缘检测
图像处理·计算机视觉·c#·emgu cv·图像分析
AI浩20 小时前
【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025
人工智能·目标检测·计算机视觉
SuperW21 小时前
Opencv中的copyto函数
人工智能·opencv·计算机视觉
阿幸软件杂货间21 小时前
PPT转图片拼贴工具 v3.0
python·opencv·计算机视觉·powerpoint
点云SLAM1 天前
PyTorch中matmul函数使用详解和示例代码
人工智能·pytorch·python·深度学习·计算机视觉·矩阵乘法·3d深度学习