均值滤波从图像复原角度的解释

廖老师说若将图像生成看作一个随机过程,均值滤波(Mean Filtering)可以视为在高斯噪声模型下的线性最小均方估计(Linear Minimum Mean Squared Error, LMMSE)或者极大似然估计(Maximum Likelihood Estimation, MLE)的特例。这给均值滤波从图像增强上升到了图像复原的高度。但是条件很严格,一般都满足不了。从频率响应的角度分析,均值滤波不如高斯平滑

根据基于高斯噪声模型的信号去噪的结论,基于高斯噪声模型的最优估计是:

f ^ = 1 n ∑ i = 1 n g i \hat{f} = \frac{1}{n} \sum_{i=1}^n g_i f^=n1i=1∑ngi

这个假设条件是

  • 高斯噪声假设 :假设噪声是均值为 0、方差为 σ 2 \sigma^2 σ2的高斯噪声。
  • 独立同分布:假设每个像素值是独立同分布的。

若假设随机过程又是均值遍历的,则可用空间平均替换时间平均。空间平均是指在同一时刻对图像中不同位置的像素进行平均,而时间平均是指对同一位置的像素在不同时间点进行平均。

若用用空间平均替换时间平均,这正是均值滤波的定义。均值滤波通过计算局部区域内所有像素值的平均值来估计真实的信号值。

在实际应用中,独立同分布的条件就不满足,况且图像并不是遍历的,如果区域亮度不一致,那么空间平均可能会使图像中的边缘变得模糊。

相关推荐
Dfreedom.5 分钟前
图像处理中的对比度增强与锐化
图像处理·人工智能·opencv·锐化·对比度增强
Ryan老房44 分钟前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
xrgs_shz1 小时前
什么是LLM、VLM、MLLM、LMM?它们之间有什么关联?
人工智能·计算机视觉
CoovallyAIHub1 小时前
让本地知识引导AI追踪社区变迁,让AI真正理解社会现象
深度学习·算法·计算机视觉
晚霞的不甘2 小时前
Flutter for OpenHarmony实现 RSA 加密:从数学原理到可视化演示
人工智能·flutter·计算机视觉·开源·视觉检测
图学习小组2 小时前
Degradation-Aware Feature Perturbation for All-in-One Image Restoration
人工智能·深度学习·计算机视觉
CoovallyAIHub2 小时前
AAAI 2026这篇杰出论文说了什么?用LLM给CLIP换了个“聪明大脑”
深度学习·算法·计算机视觉
硅谷秋水2 小时前
REALM:用于机器人操作泛化能力的真实-仿真验证基准测试
人工智能·机器学习·计算机视觉·语言模型·机器人
Pyeako2 小时前
opencv计算机视觉--LBPH&EigenFace&FisherFace人脸识别
人工智能·python·opencv·计算机视觉·lbph·eigenface·fisherface
工程师老罗2 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉