均值滤波从图像复原角度的解释

廖老师说若将图像生成看作一个随机过程,均值滤波(Mean Filtering)可以视为在高斯噪声模型下的线性最小均方估计(Linear Minimum Mean Squared Error, LMMSE)或者极大似然估计(Maximum Likelihood Estimation, MLE)的特例。这给均值滤波从图像增强上升到了图像复原的高度。但是条件很严格,一般都满足不了。从频率响应的角度分析,均值滤波不如高斯平滑

根据基于高斯噪声模型的信号去噪的结论,基于高斯噪声模型的最优估计是:

f ^ = 1 n ∑ i = 1 n g i \hat{f} = \frac{1}{n} \sum_{i=1}^n g_i f^=n1i=1∑ngi

这个假设条件是

  • 高斯噪声假设 :假设噪声是均值为 0、方差为 σ 2 \sigma^2 σ2的高斯噪声。
  • 独立同分布:假设每个像素值是独立同分布的。

若假设随机过程又是均值遍历的,则可用空间平均替换时间平均。空间平均是指在同一时刻对图像中不同位置的像素进行平均,而时间平均是指对同一位置的像素在不同时间点进行平均。

若用用空间平均替换时间平均,这正是均值滤波的定义。均值滤波通过计算局部区域内所有像素值的平均值来估计真实的信号值。

在实际应用中,独立同分布的条件就不满足,况且图像并不是遍历的,如果区域亮度不一致,那么空间平均可能会使图像中的边缘变得模糊。

相关推荐
翔云 OCR API19 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ20 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
音视频牛哥1 天前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
audyxiao0011 天前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
AI科技星1 天前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
深蓝海拓1 天前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
Coding茶水间1 天前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
CoovallyAIHub1 天前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
抛弃LLM!MIT用纯视觉方法破解ARC难题,性能接近人类水平
深度学习·算法·计算机视觉
懷淰メ2 天前
python3GUI--【AI加持】基于PyQt5+YOLOv8+DeepSeek的智能球体检测系统:(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·球体检测