pytorch张量列表索引和多维度张量索引比较

pytorch张量的高级索引取值原理解读

代码:

复制代码
import torch
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
x1 = x[[[0, 1], [1, 0]]]
x2 = x[torch.tensor([[0, 1], [1, 0]])]
print(f"x1:{x1}")
print(f"x2:{x2}")

输出:

复制代码
x1:tensor([20, 40])
x2:tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

代码解读:

**张量 x**是一个 2x3 的张量:

x1 的取值

复制代码
x1 = x[[[0, 1], [1, 0]]]
  • 索引机制 : 这里的索引 [[0, 1], [1, 0]]高级整数索引

    • 它取的是第 1 维的具体位置。
  • 步骤

    • x[[0, 1], [1, 0]] 等价于以下操作:
      • x[0, 1] -> 20
      • x[1, 0] -> 40

因此:

复制代码
x1 = [20, 40]

注:x[[[0, 1], [1, 0]]] 结果同 x[[0, 1], [1, 0]]

x2 的取值

复制代码
x2 = x[torch.tensor([[0, 1], [1, 0]])]

### 复杂索引,在0维和1维度都取
#x3 = x[torch.tensor([[0, 1], [1, 0]]),torch.tensor([[0, 1], [1, 0]])]
#print(f"x3:{x3}")

#x 3:tensor([[10, 50],
#        [50, 10]])

#print(f"x3.shape:{x3.shape}")   # x3.shape:torch.Size([2, 2])
  • 索引机制 : 这里的索引 torch.tensor([[0, 1], [1, 0]])多维整形张量索引

    • 这种索引会在第 0 维上按张量的形状进行广播
  • 广播行为

    • 索引张量的形状是 (2, 2)
    • PyTorch 会沿第 0 维取出对应的行,并按照索引结果重新排列。
  • 步骤

    • x[0] -> [10, 20, 30]
    • x[1] -> [40, 50, 60]

    根据索引张量 [[0, 1], [1, 0]],结果排列为:

    [[[10, 20, 30], # 对应索引 (0, 0)
    [40, 50, 60]], # 对应索引 (0, 1)

    [[40, 50, 60], # 对应索引 (1, 0)
    [10, 20, 30]]] # 对应索引 (1, 1)

总结:

  • x1 使用的是高级整数索引,按指定的具体位置取值(减少维度)。
  • x2 使用的是多维张量索引,按张量形状广播,生成一个更高维的结果(不减少维度)。
相关推荐
whaosoft-14342 分钟前
51c自动驾驶~合集43
人工智能
HoneyMoose1 小时前
AI Bot 爬虫新势力
人工智能·爬虫
xier_ran1 小时前
深度学习:Adam 优化器实战(Adam Optimizer)
人工智能·深度学习
人工智能训练1 小时前
Ubuntu中如何进入root用户
linux·运维·服务器·人工智能·ubuntu·ai编程·root
Cathy Bryant2 小时前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
Geo_V2 小时前
LangChain Memory 使用示例
人工智能·python·chatgpt·langchain·openai·大模型应用·llm 开发
Carl_奕然2 小时前
【机器视觉】一文掌握常见图像增强算法。
人工智能·opencv·算法·计算机视觉
放羊郎2 小时前
人工智能算法优化YOLO的目标检测能力
人工智能·算法·yolo·视觉slam·建图
xuehaikj2 小时前
基于YOLOv5-AUX的棕熊目标检测与识别系统实现
人工智能·yolo·目标检测
xier_ran3 小时前
深度学习:从零开始手搓一个深层神经网络
人工智能·深度学习·神经网络