pytorch张量列表索引和多维度张量索引比较

pytorch张量的高级索引取值原理解读

代码:

复制代码
import torch
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
x1 = x[[[0, 1], [1, 0]]]
x2 = x[torch.tensor([[0, 1], [1, 0]])]
print(f"x1:{x1}")
print(f"x2:{x2}")

输出:

复制代码
x1:tensor([20, 40])
x2:tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

代码解读:

**张量 x**是一个 2x3 的张量:

x1 的取值

复制代码
x1 = x[[[0, 1], [1, 0]]]
  • 索引机制 : 这里的索引 [[0, 1], [1, 0]]高级整数索引

    • 它取的是第 1 维的具体位置。
  • 步骤

    • x[[0, 1], [1, 0]] 等价于以下操作:
      • x[0, 1] -> 20
      • x[1, 0] -> 40

因此:

复制代码
x1 = [20, 40]

注:x[[[0, 1], [1, 0]]] 结果同 x[[0, 1], [1, 0]]

x2 的取值

复制代码
x2 = x[torch.tensor([[0, 1], [1, 0]])]

### 复杂索引,在0维和1维度都取
#x3 = x[torch.tensor([[0, 1], [1, 0]]),torch.tensor([[0, 1], [1, 0]])]
#print(f"x3:{x3}")

#x 3:tensor([[10, 50],
#        [50, 10]])

#print(f"x3.shape:{x3.shape}")   # x3.shape:torch.Size([2, 2])
  • 索引机制 : 这里的索引 torch.tensor([[0, 1], [1, 0]])多维整形张量索引

    • 这种索引会在第 0 维上按张量的形状进行广播
  • 广播行为

    • 索引张量的形状是 (2, 2)
    • PyTorch 会沿第 0 维取出对应的行,并按照索引结果重新排列。
  • 步骤

    • x[0] -> [10, 20, 30]
    • x[1] -> [40, 50, 60]

    根据索引张量 [[0, 1], [1, 0]],结果排列为:

    [[[10, 20, 30], # 对应索引 (0, 0)
    [40, 50, 60]], # 对应索引 (0, 1)

    [[40, 50, 60], # 对应索引 (1, 0)
    [10, 20, 30]]] # 对应索引 (1, 1)

总结:

  • x1 使用的是高级整数索引,按指定的具体位置取值(减少维度)。
  • x2 使用的是多维张量索引,按张量形状广播,生成一个更高维的结果(不减少维度)。
相关推荐
xwill*5 小时前
分词器(Tokenizer)-sentencepiece(把训练语料中的字符自动组合成一个最优的子词(subword)集合。)
开发语言·pytorch·python
学历真的很重要5 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友5 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何5 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何5 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何6 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何6 小时前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI7 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)7 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人7 小时前
DeepAgent学习
人工智能·学习