pytorch张量列表索引和多维度张量索引比较

pytorch张量的高级索引取值原理解读

代码:

复制代码
import torch
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
x1 = x[[[0, 1], [1, 0]]]
x2 = x[torch.tensor([[0, 1], [1, 0]])]
print(f"x1:{x1}")
print(f"x2:{x2}")

输出:

复制代码
x1:tensor([20, 40])
x2:tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

代码解读:

**张量 x**是一个 2x3 的张量:

x1 的取值

复制代码
x1 = x[[[0, 1], [1, 0]]]
  • 索引机制 : 这里的索引 [[0, 1], [1, 0]]高级整数索引

    • 它取的是第 1 维的具体位置。
  • 步骤

    • x[[0, 1], [1, 0]] 等价于以下操作:
      • x[0, 1] -> 20
      • x[1, 0] -> 40

因此:

复制代码
x1 = [20, 40]

注:x[[[0, 1], [1, 0]]] 结果同 x[[0, 1], [1, 0]]

x2 的取值

复制代码
x2 = x[torch.tensor([[0, 1], [1, 0]])]

### 复杂索引,在0维和1维度都取
#x3 = x[torch.tensor([[0, 1], [1, 0]]),torch.tensor([[0, 1], [1, 0]])]
#print(f"x3:{x3}")

#x 3:tensor([[10, 50],
#        [50, 10]])

#print(f"x3.shape:{x3.shape}")   # x3.shape:torch.Size([2, 2])
  • 索引机制 : 这里的索引 torch.tensor([[0, 1], [1, 0]])多维整形张量索引

    • 这种索引会在第 0 维上按张量的形状进行广播
  • 广播行为

    • 索引张量的形状是 (2, 2)
    • PyTorch 会沿第 0 维取出对应的行,并按照索引结果重新排列。
  • 步骤

    • x[0] -> [10, 20, 30]
    • x[1] -> [40, 50, 60]

    根据索引张量 [[0, 1], [1, 0]],结果排列为:

    [[[10, 20, 30], # 对应索引 (0, 0)
    [40, 50, 60]], # 对应索引 (0, 1)

    [[40, 50, 60], # 对应索引 (1, 0)
    [10, 20, 30]]] # 对应索引 (1, 1)

总结:

  • x1 使用的是高级整数索引,按指定的具体位置取值(减少维度)。
  • x2 使用的是多维张量索引,按张量形状广播,生成一个更高维的结果(不减少维度)。
相关推荐
mwq301232 分钟前
Claude 完整代码教程(转载)
人工智能
DisonTangor3 分钟前
【阿里拥抱开源】阿里inclusionAI开源多模态Ming-flash-omni 2.0
人工智能·开源·aigc
MaoziShan6 分钟前
CMU Subword Modeling | 01 Things Smaller than Words
人工智能·机器学习·自然语言处理
文艺倾年9 分钟前
【免训练&测试时扩展】Code Agent可控进化
人工智能·软件工程·强化学习·vibecoding
宇擎智脑科技10 分钟前
SurrealDB:面向AI原生应用的新一代多模型数据库深度解析
数据库·人工智能·ai-native
一品威客爱开发10 分钟前
网游 APP 开发:聚焦交互体验与多端协同
人工智能
前沿AI10 分钟前
中关村科金 × 中国电信 以「文旅大模型 + 智能客服」点亮自贡灯会智慧服务新标杆
人工智能
木斯佳11 分钟前
HarmonyOS实战(解决方案篇)—企业AI资产利旧:如何将已有智能体快速接入鸿蒙生态
人工智能·华为·harmonyos
LuH112413 分钟前
【ILSVRC2012】ImageNet-1k数据集下载与处理脚本
python·深度学习·机器学习
A小码哥16 分钟前
开发利器 openCode + Oh My OpenCode 四大核心智能体:Sisyphus、Prometheus、Atlas 与 Hephaestus
人工智能