pytorch张量列表索引和多维度张量索引比较

pytorch张量的高级索引取值原理解读

代码:

复制代码
import torch
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
x1 = x[[[0, 1], [1, 0]]]
x2 = x[torch.tensor([[0, 1], [1, 0]])]
print(f"x1:{x1}")
print(f"x2:{x2}")

输出:

复制代码
x1:tensor([20, 40])
x2:tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

代码解读:

**张量 x**是一个 2x3 的张量:

x1 的取值

复制代码
x1 = x[[[0, 1], [1, 0]]]
  • 索引机制 : 这里的索引 [[0, 1], [1, 0]]高级整数索引

    • 它取的是第 1 维的具体位置。
  • 步骤

    • x[[0, 1], [1, 0]] 等价于以下操作:
      • x[0, 1] -> 20
      • x[1, 0] -> 40

因此:

复制代码
x1 = [20, 40]

注:x[[[0, 1], [1, 0]]] 结果同 x[[0, 1], [1, 0]]

x2 的取值

复制代码
x2 = x[torch.tensor([[0, 1], [1, 0]])]

### 复杂索引,在0维和1维度都取
#x3 = x[torch.tensor([[0, 1], [1, 0]]),torch.tensor([[0, 1], [1, 0]])]
#print(f"x3:{x3}")

#x 3:tensor([[10, 50],
#        [50, 10]])

#print(f"x3.shape:{x3.shape}")   # x3.shape:torch.Size([2, 2])
  • 索引机制 : 这里的索引 torch.tensor([[0, 1], [1, 0]])多维整形张量索引

    • 这种索引会在第 0 维上按张量的形状进行广播
  • 广播行为

    • 索引张量的形状是 (2, 2)
    • PyTorch 会沿第 0 维取出对应的行,并按照索引结果重新排列。
  • 步骤

    • x[0] -> [10, 20, 30]
    • x[1] -> [40, 50, 60]

    根据索引张量 [[0, 1], [1, 0]],结果排列为:

    [[[10, 20, 30], # 对应索引 (0, 0)
    [40, 50, 60]], # 对应索引 (0, 1)

    [[40, 50, 60], # 对应索引 (1, 0)
    [10, 20, 30]]] # 对应索引 (1, 1)

总结:

  • x1 使用的是高级整数索引,按指定的具体位置取值(减少维度)。
  • x2 使用的是多维张量索引,按张量形状广播,生成一个更高维的结果(不减少维度)。
相关推荐
Light602 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升2 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide2 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农2 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews2 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体2 小时前
机器人的罪与罚
人工智能·机器人
三不原则3 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM3 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员3 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay3 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全