pytorch张量列表索引和多维度张量索引比较

pytorch张量的高级索引取值原理解读

代码:

复制代码
import torch
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
x1 = x[[[0, 1], [1, 0]]]
x2 = x[torch.tensor([[0, 1], [1, 0]])]
print(f"x1:{x1}")
print(f"x2:{x2}")

输出:

复制代码
x1:tensor([20, 40])
x2:tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

代码解读:

**张量 x**是一个 2x3 的张量:

x1 的取值

复制代码
x1 = x[[[0, 1], [1, 0]]]
  • 索引机制 : 这里的索引 [[0, 1], [1, 0]]高级整数索引

    • 它取的是第 1 维的具体位置。
  • 步骤

    • x[[0, 1], [1, 0]] 等价于以下操作:
      • x[0, 1] -> 20
      • x[1, 0] -> 40

因此:

复制代码
x1 = [20, 40]

注:x[[[0, 1], [1, 0]]] 结果同 x[[0, 1], [1, 0]]

x2 的取值

复制代码
x2 = x[torch.tensor([[0, 1], [1, 0]])]

### 复杂索引,在0维和1维度都取
#x3 = x[torch.tensor([[0, 1], [1, 0]]),torch.tensor([[0, 1], [1, 0]])]
#print(f"x3:{x3}")

#x 3:tensor([[10, 50],
#        [50, 10]])

#print(f"x3.shape:{x3.shape}")   # x3.shape:torch.Size([2, 2])
  • 索引机制 : 这里的索引 torch.tensor([[0, 1], [1, 0]])多维整形张量索引

    • 这种索引会在第 0 维上按张量的形状进行广播
  • 广播行为

    • 索引张量的形状是 (2, 2)
    • PyTorch 会沿第 0 维取出对应的行,并按照索引结果重新排列。
  • 步骤

    • x[0] -> [10, 20, 30]
    • x[1] -> [40, 50, 60]

    根据索引张量 [[0, 1], [1, 0]],结果排列为:

    [[[10, 20, 30], # 对应索引 (0, 0)
    [40, 50, 60]], # 对应索引 (0, 1)

    [[40, 50, 60], # 对应索引 (1, 0)
    [10, 20, 30]]] # 对应索引 (1, 1)

总结:

  • x1 使用的是高级整数索引,按指定的具体位置取值(减少维度)。
  • x2 使用的是多维张量索引,按张量形状广播,生成一个更高维的结果(不减少维度)。
相关推荐
AI_Auto4 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻4 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood4 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头5 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs6 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding6 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊6 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德7 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算7 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn7 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap