【双层模型】考虑供需双侧的综合能源双层优化模型

目录

主要内容

内容研究

1.模型简介

[2 程序释义](#2 程序释义)

部分代码

运行结果

下载链接


主要内容

该程序实现一个综合能源系统的优化调度双层模型,上下层分别采用差分进化算法和规划算法进行求解。模型考虑了多种能源设备,包括燃气轮机、燃气锅炉、风电、光伏、储能设备等的协同运行,同时兼顾了能源供应商和用户的利益,需满足各种约束条件,包括设备出力约束、储能约束、负荷平衡约束等,以供应商和用户的收益、成本等为目标进行求解,同时考虑到负荷需求响应,通过分层模型将非线性求解模型转化为线性求解模型,实现了系统的经济和性能优化。程序采用matlab+cplex进行求解,注释清楚,有对应的文档说明,方便学习研究!

内容研究

1.模型简介

上层模型目标函数为:

为了便于理解,分块分析如下:

I3代表运营商售电收入,I4代表运营商售热收入,C_CCHP代表CCHP的运行成本,C_grid代表购电成本,FD代表储能的售电收益,FH代表售热能收益。

下层目标函数为:

逐项分析如下:

FU代表用户满意度,F5代表用户的购电,F6代表用户购热成本。

该目标的意思是用户满意度最高,用户购电和购热成本最低。

下层模型是采用规划算法结合cplex优化主体出力结果和目标值。

涉及到的约束主要有:

  • 设备出力约束
  • 设备爬坡约束
  • 热电功率平衡约束
  • 与电网交互约束
  • 用户侧热电储能约束
  • 用户侧负荷转移和削减约束

2 程序释义

程序包括的子程序较多,相互间的调用关系可参考下图:

具体每部分代码含义详见下载文件夹中说明文档。

部分代码

复制代码
%基础热负荷
dh=[1000,1010,1043,1155,1172,1197,1158,1060,923,880,910,830,785,730,700,730,810,820,810,910,950,1010,1030,1020];
%基础电负荷
de=[540,528,504,516,524,520,612,652,696,856,956,968,992,864,720,676,680,668,708,976,968,960,572,532];
de1=[408,404,372,392,396,388,448,448,460,524,620,780,764,768,612,628,620,632,660,868,864,848,448,404];
%风电出力
Pwt=[203,277,264,331,137,81,72,141,43,12,20,12,5,48,86,346,287,530,491,448,603,601,403,380];
%光伏出力
Ppv=[0,0,0,0,0,0,97,220,336,410,486,444,453,445,442,325,202,140,29,0,0,0,0,0];
%电网分时电价、上网电价
grid_fs=[0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.8,0.8,0.8,1.2,1.2,1.2,1.2,0.8,0.8,0.8,0.8,1.2,1.2,1.2,0.8];
grid_sw=[0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35,0.35];    
ch_min=[0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15];%热价下限
ch_max=[0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5];%热价上限
Pice=sdpvar(1,24,'full');%电输出功率
Qgb=sdpvar(1,24,'full');%热输出功率
Pbuy=sdpvar(1,24,'full');%从电网购电电量
Psell=sdpvar(1,24,'full');%向电网售电电量
Pnet=sdpvar(1,24,'full');%交换功率
Temp_net=binvar(1,24,'full'); % 购|售电标志
le=sdpvar(1,24,'full');%可转移电负荷
lh=sdpvar(1,24,'full');%可转移热负荷
Pcharge=sdpvar(1,24,'full');UPcharge=binvar(1,24,'full');%  充电  
Pdischarge=sdpvar(1,24,'full');UPdischarge=binvar(1,24,'full');%  放电  
Hti=sdpvar(1,24,'full');UHti=binvar(1,24,'full');%充热
Hto=sdpvar(1,24,'full');UHto=binvar(1,24,'full');%放热
%用户偏好常系数
ve=1.5;
a_e=0.0009;
vh=1.1;
a_h=0.0011;
%燃气发电机、锅炉常数
ae=0.0013;
be=0.16;
ce=0;
ah=0.0005;
bh=0.11;
ch=0;
ce_ave=0.7;%平均电价约束
ch_ave=0.45;%平均热价约束
n_c=0.8;%热交换效率
n_ex=0.83;   %余热回收效率
n_ice=0.35;   %内燃机发电效率
​
%热储能
H_storage_max=1500; h_n=0.98;h_charge=0.98;h_discharge=1;%热储能容量/自损/充热/放热;
%电储能
E_storage_max=2000; e_n=1;e_charge=0.95;e_discharge=0.95;%电储能容量/自损/充电/放电;
bggin=1000;%%电储能

运行结果

下载链接

相关推荐
机器学习之心13 小时前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归
Dlkoiw19 小时前
CSMA(aloha)
matlab·aloha·csma·协议演进过程
机器学习之心20 小时前
基于双向时序卷积网络(BiTCN)与支持向量机(SVM)混合模型的时间序列预测代码Matlab源码
网络·支持向量机·matlab
MATLAB代码顾问21 小时前
MATLAB实现决策树数值预测
开发语言·决策树·matlab
民乐团扒谱机1 天前
深入浅出理解克尔效应(Kerr Effect)及 MATLAB 仿真实现
开发语言·matlab·光学·非线性光学·克尔效应·kerr effect
搞科研的小刘选手1 天前
【上海海事大学主办】第六届智能电网与能源工程国际学术会议(SGEE 2025)
能源·可再生能源·智能电网技术与电力系统·可再生能源与储能技术·能源互联网与综合能源系统·电力物联网技术·能源技术
The Open Group1 天前
能源生态系统的架构设计:利益相关方治理与跨行业协作
能源
叶子2024222 天前
判断题:可再生能源发电利用率指水电、风电、太阳能、生物质能等非化石能源占一次能源消费总量的比重。 这句话为什么错误
大数据·人工智能·能源
leo__5202 天前
MATLAB实现高光谱分类算法
支持向量机·matlab·分类
民乐团扒谱机2 天前
脉冲在克尔效应下的频谱展宽仿真:原理与 MATLAB 实现
开发语言·matlab·光电·非线性光学·克尔效应