LangChain - 构建 AI 应用的强大框架

一、什么是 LangChain?

LangChain 是一个用于开发基于大语言模型(LLM)应用程序的框架,它提供了一系列工具和抽象,让开发者能够更容易地构建复杂的 AI 应用。

二、核心概念

1. 基础组件

从示例代码中我们可以看到几个重要的基础组件:

1. 环境配置

js 复制代码
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_BASE_URL"] = "your-base-url"

2. 聊天模型

js 复制代码
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0.8,
    max_tokens=60    
)

3. 基础LLM

js 复制代码
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")

2. 消息类型

LangChain 支持多种消息类型:

js 复制代码
from langchain.schema import (
    SystemMessage,  # 系统消息
    HumanMessage    # 用户消息
)
messages = [
    SystemMessage(content="你是一个很棒的风水师"),
    HumanMessage(content="请给我的花店起个名")
]

3. 模板系统

LangChain 提供了强大的模板系统:

js 复制代码
from langchain.prompts import PromptTemplate
template = """你是一位专业的鲜花店的文案撰写员。
对于售价为{price} 元的{flower_name},你能提供一个吸引人的简短描述吗?
"""
prompt = PromptTemplate.from_template(template)
input = prompt.format(flower_name="玫瑰",price="99")

三、实际应用示例

1. 简单对话

js 复制代码
chat = ChatOpenAI(    model="gpt-3.5-turbo",   
temperature=0.8,    
max_tokens=60    
)

messages = [    SystemMessage(content="你是一个很棒的风水师"),
HumanMessage(content="请给我的花店起个名")]

response = chat(messages)
print(response.content)

2. 模板化文案生成

js 复制代码
template = """你是一位专业的鲜花店的文案撰写员。
对于售价为{price} 元的{flower_name},你能提供一个吸引人的简短描述吗?
"""

prompt = PromptTemplate.from_template(template)

input = prompt.format(flower_name="玫瑰",price="99")

model = OpenAI(model_name="gpt-3.5-turbo-instruct")output = model.invoke(input)

2. 格式化输出格式

js 复制代码
# 格式化输出
from langchain.output_parsers import StructuredOutputParser, ResponseSchema

response_schemas = [
    ResponseSchema(name="description",description="鲜花的描述文案"),
    ResponseSchema(name="reason",description="为什么要这样写这个文案"),
]

output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
print(output_parser)

format_instruction = output_parser.get_format_instructions()
print(format_instruction)

output = PromptTemplate.from_template(template,
partial_variables={"format_instruction":format_instructions})

input = prompt.format_prompt(
    flower_name="玫瑰",
    price="99",
    format_instruction=format_instruction
)
print(input)

output = model.invoke(input)
print(output)
相关推荐
袁庭新2 小时前
2025年10月总结
人工智能·aigc·coze
aitoolhub2 小时前
考研论文引用格式 AI 校验实操:工具合集 + 技术原理
c语言·人工智能·考研·aigc
小奏技术3 小时前
LLM 交互的“省钱”新姿势:JSON 已死,TOON 当立
后端·aigc
南方者16 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
墨风如雪16 小时前
国产AI代码逆袭:GLM-4.6凭什么并列全球第一?
aigc
却尘1 天前
🚀 MCP基础完全上手指南:让Claude像开挂一样调用外部工具
aigc·ai编程·mcp
后端小肥肠1 天前
别再找提示词了!n8n+Coze+Sora2:扔个链接,AI自动反推,爆款视频直存本地!
aigc·agent·coze
AI袋鼠帝1 天前
Cursor可以删了?美团悄悄上线了个更香的平替~
aigc·ai编程
AI袋鼠帝1 天前
豆包也开始抢程序员饭碗了,一个月只要9块9。。
aigc·ai编程
小和尚同志2 天前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc