LangChain - 构建 AI 应用的强大框架

一、什么是 LangChain?

LangChain 是一个用于开发基于大语言模型(LLM)应用程序的框架,它提供了一系列工具和抽象,让开发者能够更容易地构建复杂的 AI 应用。

二、核心概念

1. 基础组件

从示例代码中我们可以看到几个重要的基础组件:

1. 环境配置

js 复制代码
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_BASE_URL"] = "your-base-url"

2. 聊天模型

js 复制代码
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0.8,
    max_tokens=60    
)

3. 基础LLM

js 复制代码
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")

2. 消息类型

LangChain 支持多种消息类型:

js 复制代码
from langchain.schema import (
    SystemMessage,  # 系统消息
    HumanMessage    # 用户消息
)
messages = [
    SystemMessage(content="你是一个很棒的风水师"),
    HumanMessage(content="请给我的花店起个名")
]

3. 模板系统

LangChain 提供了强大的模板系统:

js 复制代码
from langchain.prompts import PromptTemplate
template = """你是一位专业的鲜花店的文案撰写员。
对于售价为{price} 元的{flower_name},你能提供一个吸引人的简短描述吗?
"""
prompt = PromptTemplate.from_template(template)
input = prompt.format(flower_name="玫瑰",price="99")

三、实际应用示例

1. 简单对话

js 复制代码
chat = ChatOpenAI(    model="gpt-3.5-turbo",   
temperature=0.8,    
max_tokens=60    
)

messages = [    SystemMessage(content="你是一个很棒的风水师"),
HumanMessage(content="请给我的花店起个名")]

response = chat(messages)
print(response.content)

2. 模板化文案生成

js 复制代码
template = """你是一位专业的鲜花店的文案撰写员。
对于售价为{price} 元的{flower_name},你能提供一个吸引人的简短描述吗?
"""

prompt = PromptTemplate.from_template(template)

input = prompt.format(flower_name="玫瑰",price="99")

model = OpenAI(model_name="gpt-3.5-turbo-instruct")output = model.invoke(input)

2. 格式化输出格式

js 复制代码
# 格式化输出
from langchain.output_parsers import StructuredOutputParser, ResponseSchema

response_schemas = [
    ResponseSchema(name="description",description="鲜花的描述文案"),
    ResponseSchema(name="reason",description="为什么要这样写这个文案"),
]

output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
print(output_parser)

format_instruction = output_parser.get_format_instructions()
print(format_instruction)

output = PromptTemplate.from_template(template,
partial_variables={"format_instruction":format_instructions})

input = prompt.format_prompt(
    flower_name="玫瑰",
    price="99",
    format_instruction=format_instruction
)
print(input)

output = model.invoke(input)
print(output)
相关推荐
小奏技术7 小时前
基于 Spring AI 和 MCP:用自然语言查询 RocketMQ 消息
后端·aigc·mcp
杂雾无尘9 小时前
用 Trae 打造全栈项目魔法师 - 让项目初始化不再是噩梦
aigc·openai·ai编程
程序员X小鹿12 小时前
全球首个能无限跑的AI来了!AI Agents的下一站?这才是真的颠覆式革新!(附10个邀请码)
aigc
掘我的金18 小时前
深入解析Stream函数与生成器本质
llm·aigc
掘我的金18 小时前
Prompt Cache 与 Streaming:核心机制与优化实践
llm·aigc
运营黑客2 天前
揭秘丨ChatGPT超级记忆功能,是如何工作的?(干货预警)
aigc·openai
墨风如雪2 天前
告别机械感!OpenAudio S1让AI声音活起来
aigc
墨风如雪2 天前
Sora触手可及!微软必应AI视频生成器,全民创作时代来临?
aigc