矩阵和向量点乘叉乘元素乘

Date: 2025.01.07

Author: Xin Pan

回顾下矩阵和向量的各种乘法。

向量

点乘

又叫做点积、内积、数量积、标量积。 a = [ a 1 , a 2 , . . . , a n ] a=[a_1,a_2,...,a_n] a=[a1,a2,...,an]和 b = [ b 1 , b 2 , . . . , b n ] b=[b_1,b_2,...,b_n] b=[b1,b2,...,bn]点乘的结果是一个标量,记作 a . b a.b a.b

a . b = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + . . . + a n b n a.b=\sum_{i=1}^na_ib_i=a_1b_1+a_2b_2+...+a_nb_n a.b=∑i=1naibi=a1b1+a2b2+...+anbn

叉乘

又叫向量积、外积、叉积,叉乘, a = [ a 1 , a 2 , . . . , a n ] a=[a_1,a_2,...,a_n] a=[a1,a2,...,an]和 b = [ b 1 , b 2 , . . . , b n ] b=[b_1,b_2,...,b_n] b=[b1,b2,...,bn]叉乘的运算结果是一个向量,并且两个向量的叉积与这两个向量组成的坐标平面垂直,记作 a x b axb axb

a x b = ( a 2 b 3 − b 2 a 3 , − a 1 b 3 + b 1 a 3 , a 1 b 2 − b 1 a 2 ) axb=(a_2b_3-b_2a_3,-a_1b_3+b_1a_3,a_1b_2-b_1a_2) axb=(a2b3−b2a3,−a1b3+b1a3,a1b2−b1a2)

元素乘(我自己起的名,为了方便理解)

对应位置元素相成,维度不变。

python 复制代码
import numpy as np

if __name__ == "__main__":
    a = np.array([1, 2, 3])
    b = np.array([4, 5, 6])

    print(f"Dot={np.dot(a,b)}")
    print(f"Cross={np.cross(a,b)}")
    print(f"@ times={a@b}")
    print(f"* times={a*b}")
    print(f"np.multiply={np.multiply(a,b)}")

结果

latex 复制代码
Dot=32
Cross=[-3  6 -3]
@ times=32
* times=[ 4 10 18]
np.multiply=[ 4 10 18]

矩阵

点乘

是矩阵各个对应元素相乘, 这个时候要求两个矩阵必须同样大小。做的事和向量的元素乘一样的。可以直接使用星号(*)进行表示。

叉乘

矩阵的乘法就是矩阵a的第m行乘以矩阵b的第n列,各个元素对应相乘然后求和作为第m行n列元素的值。使用np.dot函数执行,也可以使用@计算。

元素乘(我自己起的名,为了方便理解)

和矩阵点乘做的是一样的事情。

python 复制代码
import numpy as np

if __name__ == "__main__":
    a = np.array([[1, 2, 3], [4, 5, 6]])
    b = np.array([[7, 8, 9], [10, 11, 12]])

    print(f"Dot={np.dot(a,b.T)}")
    print(f"Cross={np.cross(a,b)}")
    print(f"@ times={a@b.T}")
    print(f"* times={a*b}")
    print(f"np.multiply={np.multiply(a,b)}")

结果

latex 复制代码
Dot=[[ 50  68]
 [122 167]]
Cross=[[-6 12 -6]
 [-6 12 -6]]
@ times=[[ 50  68]
 [122 167]]
* times=[[ 7 16 27]
 [40 55 72]]
np.multiply=[[ 7 16 27]
 [40 55 72]]

总结

维度 点乘结果 叉乘结果 元素乘结果
向量 [1,N] 或 [N,1] 向量 向量
矩阵 [M,N] M,N可能一致 矩阵 矩阵 矩阵
维度 点乘表示 叉乘表示 元素乘表示
向量 [1,N] 或 [N,1] np.dot or @ np.cross * or multiply
矩阵 [M,N] M,N可能一致 * or multiply np.dot or @ * or multiply
相关推荐
麦田里的稻草人w8 分钟前
【pyqt】(八)ui文件使用
python·ui·pyqt
Toormi17 分钟前
Python中协程间通信的方式有哪些?
开发语言·网络·python
赛亚超21 分钟前
将txt转成excel正则化公式的调整
人工智能·python·excel
念念不忘 必有回响21 分钟前
python初体验: 处理excel数据
开发语言·python·excel
TENET信条30 分钟前
代码随想录 day62 第十一章 图论part11
开发语言·python·图论
是十一月末38 分钟前
机器学习之决策树的分类树模型及决策树绘制
人工智能·python·决策树·机器学习·信息可视化·分类
SsummerC2 小时前
【leetcode100】二叉树的直径
数据结构·python·算法·leetcode
RacheV+TNY2642782 小时前
未来趋势:电商平台API接口的智能化与自动化发展
网络·人工智能·python·自动化·api
写点什么呢2 小时前
Pytorch学习12_最大池化的使用
人工智能·pytorch·python·深度学习·学习·pycharm
郝开2 小时前
Python中的可变对象与不可变对象;Python中的六大标准数据类型哪些属于可变对象,哪些属于不可变对象
开发语言·python·可变对象·不可变对象