单片机控制

要求通过单片机实现以下功能:

1.单片机有三种工作模式(定义全局变量MM表示模式,MM=1,2,3表示三种不同的模式)

  • LED控制模式
  • 风扇控制模式
  • 蜂鸣器控制模式

2.可以在某一个模式下通过拓展板KEY1按键控制设备

按键按下一次,设备打开,按键再按下一次,设备关闭(设备管脚输出反向电平)

3.关于模式的切换可以通过以下方式:

    • 通过串口通信,电脑端发送当前模式(设置串口接收中断,接收到的字符串进行比较)
      • 电脑发送LED,进入LED模式
      • 电脑发送FAN ,进行风扇控制模式
      • 电脑发送BEE,进入蜂鸣器控制模式
cpp 复制代码
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "icache.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
#include "stdio.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void SystemPower_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
char buf[32];
int MM = 0;
int fputc(int ch, FILE* F){
	//HAL_UART_Transmit(&huart1,(uint8_t*)&ch,1,100);
	while(!(USART1->ISR & (0X1 << 7)));
	USART1->TDR = ch;
	while(!(USART1->ISR & (0X1 << 6)));
	return ch;
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){
	printf("enter messages:%s\n\r",buf);
	//HAL_UART_Receive_IT(&huart1,(uint8_t *)buf,3);
	if(strcmp(buf,"LED") == 0){
		MM = 1;
	}
	else if(strcmp(buf,"FAN") == 0){
		MM = 2;
	}
	else if(strcmp(buf,"BEE") == 0){
		MM = 3;
	}
	HAL_UART_Receive_IT(&huart1,(uint8_t *)buf,3);
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* Configure the System Power */
  SystemPower_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ICACHE_Init();
  MX_USART1_UART_Init();
	//HAL_UART_Receive_IT(&huart1,(uint8_t *)buf,3);
  /* USER CODE BEGIN 2 */
	//HAL_UART_Receive_IT(&huart1,(uint8_t*)buf,3);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		HAL_UART_Receive_IT(&huart1,(uint8_t*)buf,3);
		if(HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_9) == 0){
			if(MM == 1){
				HAL_GPIO_TogglePin(GPIOC,GPIO_PIN_4);
			}
			else if(MM == 2){
				HAL_GPIO_TogglePin(GPIOC,GPIO_PIN_6);
			}
			else if (MM == 3){
				HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_15);
			}
		}
    /* USER CODE END WHILE */
			
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE4) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_4;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Power Configuration
  * @retval None
  */
static void SystemPower_Config(void)
{

  /*
   * Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
   */
  HAL_PWREx_DisableUCPDDeadBattery();
/* USER CODE BEGIN PWR */
/* USER CODE END PWR */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
相关推荐
Jcenav6 小时前
OCXO外围电路设计指南
单片机·嵌入式硬件
Nautiluss6 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
神圣的大喵6 小时前
平台无关的嵌入式通用按键管理器
c语言·单片机·嵌入式硬件·嵌入式·按键库
三佛科技-134163842126 小时前
FT8353系列(FT8353A/B/C/CD/DD/K/KD/PD)隔离型LED恒流驱动IC芯片 典型应用电路
单片机·物联网·智能家居·pcb工艺
无人装备硬件开发爱好者7 小时前
深度解析:STM32 MDK 工程 HEX 文件转 BIN 文件 —— 原理、方法、优缺点与实战指南(中)
stm32·嵌入式软件·hex2bin
阿拉斯攀登7 小时前
嵌入式-硬件基础:了解三极管
单片机·嵌入式硬件·三极管
逐步前行7 小时前
C51_74HC165并口转串口
单片机·51单片机
HarrySunCn8 小时前
如何使用VSCode开发Arduino项目
ide·vscode·单片机·编辑器
嵌入式的飞鱼8 小时前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
三佛科技-134163842129 小时前
LN8K05A/B/C_5V非隔离AC-DC电源芯片 典型应用场景、典型电路、与阻容降压的对比分析
单片机·嵌入式硬件·物联网·智能家居·pcb工艺