将txt转成excel正则化公式的调整

将训练的结果转换成excel是送到画图的关键,但是在转的过程中出现了问题,发现是正则化公式的结果。

使用网站进行调试,最终可以转了。下面是调试的工具以及调试好的代码。

regex101: build, test, and debug regex

上面是正则化公式,下面是他的txt文件中的格式,要对应好才能转换。最后调好了,是没加空格的问题。

复制代码
import re
import pandas as pd

# 读取日志文件
log_file = r"origin\原始\20241102_191949.txt"  # 替换为你的日志文件路径
with open(log_file, "r", encoding="utf-8") as f:
    lines = f.readlines()

# 初始化存储数据的列表
data = []

# 正则表达式提取数据
pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3} - pyskl - INFO - Epoch \[(\d+)\]\[(\d+)\/(\d+)\]\s+lr: ([\d.e+-]+),\s+eta: ([\d\w\s:,]+),\s+time: ([\d.]+),\s+data_time: ([\d.]+),\s+memory: ([\d]+),\s+top1_acc: ([\d.]+),\s+top5_acc: ([\d.]+),\s+loss_cls: ([\d.]+),\s+loss: ([\d.]+),\s+grad_norm: ([\d.]+)"

# 解析日志文件
for line in lines:
    print(f"Processing line: {line.strip()}")  # 调试信息
    match = re.search(pattern, line)
    if match:
        print(f"Match found: {match.groups()}")  # 调试信息
        # 提取匹配的数据
        epoch = int(match.group(1))
        current_step = int(match.group(2))
        total_steps = int(match.group(3))
        lr = float(match.group(4))
        eta = match.group(5)
        time = float(match.group(6))
        data_time = float(match.group(7))
        memory = int(match.group(8))
        top1_acc = float(match.group(9))
        top5_acc = float(match.group(10))
        loss_cls = float(match.group(11))
        loss = float(match.group(12))
        grad_norm = float(match.group(13))

        # 将数据添加到列表中
        data.append([epoch, current_step, total_steps, lr, eta, time, data_time, memory, top1_acc, top5_acc, loss_cls, loss, grad_norm])
    else:
        print("No match found")  # 调试信息

# 创建 DataFrame
columns = ["Epoch", "Current Step", "Total Steps", "Learning Rate", "ETA", "Time", "Data Time", "Memory", "Top1 Accuracy", "Top5 Accuracy", "Loss Cls", "Loss", "Grad Norm"]
df = pd.DataFrame(data, columns=columns)

# 保存为 Excel 文件
output_file = r"rigin\原始\20241102_191949.xlsx"  # 替换为你的输出文件路径
df.to_excel(output_file, index=False)

print(f"数据已保存到 {output_file}")
相关推荐
学术 学术 Fun4 分钟前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
萧鼎18 分钟前
深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
数据库·python·neo4j
华子w90892585933 分钟前
基于 Python Django 和 Spark 的电力能耗数据分析系统设计与实现7000字论文实现
python·spark·django
风铃喵游1 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
Rockson1 小时前
使用Ruby接入实时行情API教程
javascript·python
booooooty1 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer2 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标2 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒
ai_xiaogui2 小时前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装
Tipriest_2 小时前
Python关键字梳理
python·关键字·keyword