【Pandas】pandas Series truediv

Pandas2.2 Series

Binary operator functions

方法 描述
Series.add() 用于对两个 Series 进行逐元素加法运算
Series.sub() 用于对两个 Series 进行逐元素减法运算
Series.mul() 用于对两个 Series 进行逐元素乘法运算
Series.div() 用于对两个 Series 进行逐元素除法运算
Series.truediv() 用于执行真除法(即浮点数除法)操作

pandas.Series.truediv

pandas.Series.truediv 是 Pandas 库中 Series 对象的一个方法,用于执行真除法(即浮点数除法)操作。这个方法可以将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行除法运算。

参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行除法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含除法运算的结果。

示例
示例1: 标量除法
python 复制代码
import pandas as pd

s = pd.Series([10, 20, 30, 40])
result = s.truediv(10)
print(result)

输出:

0    1.0
1    2.0
2    3.0
3    4.0
dtype: float64
示例2: Series 除法
python 复制代码
import pandas as pd

s1 = pd.Series([10, 20, 30, 40])
s2 = pd.Series([2, 4, 5, 10])
result = s1.truediv(s2)
print(result)

输出:

0    5.0
1    5.0
2    6.0
3    4.0
dtype: float64
示例3: 使用 fill_value 处理缺失值
python 复制代码
import pandas as pd
import numpy as np

s1 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([2, 4, 5], index=['a', 'b', 'c'])
result = s1.truediv(s2, fill_value=1)
print(result)

输出:

a     5.0
b     5.0
c     6.0
d    40.0
dtype: float64

在这个例子中,s2 没有索引 'd',因此在对齐时 s2['d'] 被视为缺失值,并用 fill_value 指定的值 1 来代替,从而计算出 40.0

相关推荐
永康李1 天前
Pandas:从一个DataFrame中直接索引赋值到另一个索引位置出错的Bug及其解决方案
python·bug·pandas
Lx3521 天前
Pandas高级数据处理:数据安全与隐私保护
pandas
AuGuSt_812 天前
【对比】Pandas 和 Polars 的区别
pandas·polars
weixin_307779132 天前
PySpark检查两个DataFrame的数据是否一致
大数据·spark·pandas
鹿鸣悠悠3 天前
第二月:学习 NumPy、Pandas 和 Matplotlib 是数据分析和科学计算的基础
学习·numpy·pandas
PowerBI学谦4 天前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas
数据媛4 天前
机器学习_13 决策树知识总结
人工智能·python·决策树·机器学习·numpy·pandas·sklearn
数据媛5 天前
机器学习_18 K均值聚类知识点总结
python·机器学习·均值算法·numpy·pandas·scikit-learn·聚类
游王子9 天前
Python Pandas(9):Pandas 相关性分析
开发语言·python·pandas
游王子11 天前
Python Pandas(7):Pandas 数据清洗
开发语言·python·pandas