【Pandas】pandas Series truediv

Pandas2.2 Series

Binary operator functions

方法 描述
Series.add() 用于对两个 Series 进行逐元素加法运算
Series.sub() 用于对两个 Series 进行逐元素减法运算
Series.mul() 用于对两个 Series 进行逐元素乘法运算
Series.div() 用于对两个 Series 进行逐元素除法运算
Series.truediv() 用于执行真除法(即浮点数除法)操作

pandas.Series.truediv

pandas.Series.truediv 是 Pandas 库中 Series 对象的一个方法,用于执行真除法(即浮点数除法)操作。这个方法可以将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行除法运算。

参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行除法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含除法运算的结果。

示例
示例1: 标量除法
python 复制代码
import pandas as pd

s = pd.Series([10, 20, 30, 40])
result = s.truediv(10)
print(result)

输出:

复制代码
0    1.0
1    2.0
2    3.0
3    4.0
dtype: float64
示例2: Series 除法
python 复制代码
import pandas as pd

s1 = pd.Series([10, 20, 30, 40])
s2 = pd.Series([2, 4, 5, 10])
result = s1.truediv(s2)
print(result)

输出:

复制代码
0    5.0
1    5.0
2    6.0
3    4.0
dtype: float64
示例3: 使用 fill_value 处理缺失值
python 复制代码
import pandas as pd
import numpy as np

s1 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([2, 4, 5], index=['a', 'b', 'c'])
result = s1.truediv(s2, fill_value=1)
print(result)

输出:

复制代码
a     5.0
b     5.0
c     6.0
d    40.0
dtype: float64

在这个例子中,s2 没有索引 'd',因此在对齐时 s2['d'] 被视为缺失值,并用 fill_value 指定的值 1 来代替,从而计算出 40.0

相关推荐
橙露14 分钟前
从零基础到实战:Python 数据分析三剑客(Pandas+NumPy+Matplotlib)核心应用指南
python·数据分析·pandas
清水白石00816 小时前
手写超速 CSV 解析器:利用 multiprocessing 与 mmap 实现 10 倍 Pandas 加速
python·pandas
Hello.Reader3 天前
PyFlink 向量化 UDF(Vectorized UDF)Arrow 批传输原理、pandas 标量/聚合函数、配置与内存陷阱、五种写法一网打尽
python·flink·pandas
Hello.Reader3 天前
PyFlink Table API Data Types DataType 是什么、UDF 类型声明怎么写、Python / Pandas 类型映射一文搞懂
python·php·pandas
Hello.Reader3 天前
PyFlink Table API 用户自定义函数(UDF)通用 UDF vs Pandas UDF、打包部署、open 预加载资源、读取作业参数、单元测试
log4j·pandas
海棠AI实验室4 天前
第十六章:小项目 2 CSV → 清洗 → 统计 → 图表 → 报告输出
pandas
逻极4 天前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
海棠AI实验室4 天前
第十七章 调试与排错:读懂 Traceback 的方法论
python·pandas·调试
kong79069284 天前
Pandas简介
信息可视化·数据分析·pandas
爱喝可乐的老王4 天前
数据分析实践--数据解析购房关键
信息可视化·数据分析·pandas·matplotlib