统计学习方法(第二版) 第六章 逻辑斯特回归

本文主要介绍逻辑斯特回归,以及参数的估计,推广到多项逻辑斯特回归。


前言

逻辑斯特回归(简称逻辑回归)是统计学习中常用的经典分类方法。

个人理解主要思想:

对于二项逻辑斯特回归,主要是应用线性回归,通过逻辑斯蒂回归分布函数(sigmoid函数)进行非线性映射到[0,1]上的条件概率,最终利用极大似然估计来求解参数问题,根据得到的参数从而进行分类。

不知道理解的有没有错误,对于逻辑斯特回归没有进行本质的理解,只知道逻辑斯特回归应用生长问题比较多,就是我们在生物上学到的S型曲线。


一、逻辑斯蒂分布(逻辑分布)

二、二项 逻辑斯特回归模型(逻辑回归)

三、模型的参数估计

利用极大似然估计来求解参数。

四、多项逻辑斯特回归


总结

逻辑回归通过线性回归的非线性映射,从而达到分类的目的,虽然叫回归但还是分类问题,最长用二分类问题。

相关推荐
thinkerCoder4 小时前
SmoothQuant:一种用于大型语言模型的准确高效的训练后量化方法
人工智能·语言模型·自然语言处理
HUI 别摸鱼了4 小时前
【Gabor滤波】
人工智能
好奇龙猫4 小时前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
LiFileHub4 小时前
ISO/IEC 5338:2023中文版
人工智能
慎独4135 小时前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI131414135 小时前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
wanzhong23335 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
ZzzZ314159265 小时前
【无标题】
人工智能
Hcoco_me5 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__5 小时前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang