统计学习方法(第二版) 第六章 逻辑斯特回归

本文主要介绍逻辑斯特回归,以及参数的估计,推广到多项逻辑斯特回归。


前言

逻辑斯特回归(简称逻辑回归)是统计学习中常用的经典分类方法。

个人理解主要思想:

对于二项逻辑斯特回归,主要是应用线性回归,通过逻辑斯蒂回归分布函数(sigmoid函数)进行非线性映射到[0,1]上的条件概率,最终利用极大似然估计来求解参数问题,根据得到的参数从而进行分类。

不知道理解的有没有错误,对于逻辑斯特回归没有进行本质的理解,只知道逻辑斯特回归应用生长问题比较多,就是我们在生物上学到的S型曲线。


一、逻辑斯蒂分布(逻辑分布)

二、二项 逻辑斯特回归模型(逻辑回归)

三、模型的参数估计

利用极大似然估计来求解参数。

四、多项逻辑斯特回归


总结

逻辑回归通过线性回归的非线性映射,从而达到分类的目的,虽然叫回归但还是分类问题,最长用二分类问题。

相关推荐
海边夕阳20062 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI2 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_3 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭3 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT3 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"3 小时前
专项智能练习(课程类型)
人工智能
2501_918126914 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home4 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
CoderYanger4 小时前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节