统计学习方法(第二版) 第六章 逻辑斯特回归

本文主要介绍逻辑斯特回归,以及参数的估计,推广到多项逻辑斯特回归。


前言

逻辑斯特回归(简称逻辑回归)是统计学习中常用的经典分类方法。

个人理解主要思想:

对于二项逻辑斯特回归,主要是应用线性回归,通过逻辑斯蒂回归分布函数(sigmoid函数)进行非线性映射到[0,1]上的条件概率,最终利用极大似然估计来求解参数问题,根据得到的参数从而进行分类。

不知道理解的有没有错误,对于逻辑斯特回归没有进行本质的理解,只知道逻辑斯特回归应用生长问题比较多,就是我们在生物上学到的S型曲线。


一、逻辑斯蒂分布(逻辑分布)

二、二项 逻辑斯特回归模型(逻辑回归)

三、模型的参数估计

利用极大似然估计来求解参数。

四、多项逻辑斯特回归


总结

逻辑回归通过线性回归的非线性映射,从而达到分类的目的,虽然叫回归但还是分类问题,最长用二分类问题。

相关推荐
盼小辉丶38 分钟前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
说私域2 小时前
基于开源AI智能客服、AI智能名片与S2B2C商城小程序的微商服务优化及复购转介绍提升策略研究
人工智能·小程序
之歆4 小时前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
legendary_bruce6 小时前
【22-决策树】
算法·决策树·机器学习
paid槮6 小时前
机器学习总结
人工智能·深度学习·机器学习
Hello123网站6 小时前
职得AI简历-免费AI简历生成工具
人工智能·ai工具
亚里随笔7 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼7 小时前
机器学习之PCA降维
人工智能·机器学习
东方不败之鸭梨的测试笔记7 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
失散139 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习