绘制人体3D关键点

一背景

最近学习了3D人体骨骼关键点检测算法。需要修改可视化3D,在此记录可视化3D骨骼点绘画思路以及代码实现。

二可视化画需求

希望在一张图显示,标签的3D结果,模型预测的3D结果,预测和标签一起的结果,以及对应的图像,并保存视频。

三代码实现

1 读取标签数据

python 复制代码
import os, sys, copy, cv2
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import imageio
import io
import matplotlib.animation as animation
import matplotlib as mpl

def string_to_float(data):
    
    return list(map(lambda x:float(x), data))


def read_label(label_txt_file):
    
    if os.path.exists(label_txt_file) == False:
        print('find not file : ', label_txt_file)
        sys.exit(1)
    
    label_dict = {}
    class_id = [0, 1, 2, 3, 4, 5]
    
    with open(label_txt_file, 'r') as f:
        lines = f.readlines()
        
        #line = lines[0:1] + lines[3:9]
        line = lines
        line = list(map(lambda x:x.strip(), line))
        line = list(map(lambda x:x.split(' '), line))
        line = list(map(lambda x:string_to_float(x), line))
        line = np.array(line)
        
        point2d = line[1:, 2:4]
        point2d = np.array(point2d)
        
        line  = np.array(line[..., 4:])

        find_0_id = line[..., -1] == 0.0

        not_find_0_id = ~find_0_id
        line_temp = line[not_find_0_id]
        temp      = line_temp[..., 3] / 1000

        line_temp[..., 2]   = temp
        line[not_find_0_id] = line_temp
        
        data = line[..., 0:3] - line[0, 0:3]
        
    return data, point2d

标签中有2D坐标和3D坐标。

2 获取模型预测数据

python 复制代码
def pred_label(pred_txt_file):
    
    if os.path.exists(pred_txt_file) == False:
        print('find not file : ', pred_txt_file)
        sys.exit(1)
    
    all_point = []
    with open(pred_txt_file, 'r') as f:
        all_lines = f.readlines()
        line = all_lines[0:1] + all_lines[1:17]
        
        line = list(map(lambda x:x.strip(), line))
        line = list(map(lambda x:x.split(' '), line))
        line = list(map(lambda x:string_to_float(x), line))

        all_point.append(line)
    
    all_point = np.array(all_point)
    all_points = []
    all_p  = all_point[0, 1:, -3:]
    base_p = all_point[0, 0, -3:]
    
    all_points.append(base_p)
    for i in range(8):
        all_points.append(all_p[i*2 + 1].tolist())
        all_points.append(all_p[i*2].tolist())
    
    all_points = np.array(all_points)
    all_points -= base_p
    
    return all_points

注意,注意,注意 读取标签和模型预测时候,我都减去了根节点的坐标的。

3 绘制3D骨骼图

python 复制代码
#画骨骼点代码
def draw3Dpose(label_pose_3d, pred_pose_3d, ax1, ax2, ax3, label_total_ids, pred_total_ids, lcolor="r", rcolor="g", add_labels=False):  # blue, orange
"""
label_pose_3d : 标签3D坐标
pred_pose_3d : 模型预测的3D坐标
ax1, ax2, ax3 子图
label_total_ids : 标签关键点个点连接关系
pred_total_ids : 模型预测的关键点连接关系
""
    colors_keys = [
             '#FF0000',  # 红色
             '#00FF00',  # 绿色
             '#0000FF',  # 蓝色
             '#FFFF00',  # 黄色
             '#FF00FF',  # 洋红
             '#00FFFF',  # 青色
             '#FFA500',  # 橙色
             '#800080',  # 紫色
             '#008000',  # 深绿
             '#000080',  # 深蓝
             '#808000',  # 橄榄绿
             '#800000',  # 栗色
             '#008080',  # 青色
             '#808080',  # 灰色
             '#A52A2A',  # 棕色
             '#D2691E',  # 巧克力色
             '#00FFFF'
         ]
    
    
    for k in range(len(label_total_ids)):
        l_ids = label_total_ids[k]
        p_ids = pred_total_ids[k]
        lx, ly, lz = [np.array([label_pose_3d[l_ids[0], j], label_pose_3d[l_ids[1], j]]) for j in range(3)]
        px, py, pz = [np.array([pred_pose_3d[p_ids[0], j], pred_pose_3d[p_ids[1], j]]) for j in range(3)]
        if l_ids[2] == 3:
            color = 'b'
            ax1.plot(lx, ly, lz, lw=2, c=color)
            ax2.plot(lx, ly, lz, lw=2, c=color)
            ax3.plot(lx, ly, lz, lw=2, c=color)
        
        elif p_ids[2] == 3:
            color = 'b'
            ax1.plot(px, py, pz, lw=2, c=color)
            ax2.plot(px, py, pz, lw=2, c=color)
            ax3.plot(px, py, pz, lw=2, c=color)            
            
        else:
            ax1.plot(lx, ly, lz, lw=2, c=lcolor if l_ids[2] else rcolor)
            ax2.plot(px, py, pz, lw=2, c=lcolor if p_ids[2] else rcolor)            
            ax3.plot(lx, ly, lz, lw=2, c=lcolor if l_ids[2] else rcolor)
            ax3.plot(px, py, pz, lw=2, c=lcolor if p_ids[2] else rcolor)                   
        
        key_color = colors_keys[k]
        ax1.scatter(lx, ly, lz, color=key_color, marker='o', s=5)
        ax2.scatter(px, py, pz, color=key_color, marker='o', s=5)        
        ax3.scatter(lx, ly, lz, color=key_color, marker='o', s=5)
        ax3.scatter(px, py, pz, color=key_color, marker='o', s=5)  
        
    
    ax1.set_xlim3d([-100, 100])
    ax1.set_zlim3d([70, 200])
    ax1.set_ylim3d([-100, 100])    
    
    ax1.set_xlabel("x")
    ax1.set_ylabel("y")
    ax1.set_zlabel("z")
    
    
    ax2.set_xlim3d([-100, 100])
    ax2.set_zlim3d([70, 200])
    ax2.set_ylim3d([-100, 100])    
    
    ax2.set_xlabel("x")
    ax2.set_ylabel("y")
    ax2.set_zlabel("z")    
    
    
    ax3.set_xlim3d([-100, 100])
    ax3.set_zlim3d([70, 200])
    ax3.set_ylim3d([-100, 100])    
    
    ax3.set_xlabel("x")
    ax3.set_ylabel("y")
    ax3.set_zlabel("z")

#把fig转换成图片,用于保存视频.
def get_img_from_fig(fig, dpi=500):
    buf = io.BytesIO()
    #fig.savefig(buf, format='png', dpi=dpi, bbox_inches='tight', pad_inches=0)
    fig.savefig(buf, format='png', dpi=dpi, pad_inches=0.2)
    buf.seek(0)
    img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    buf.close()
    img = cv2.imdecode(img_arr, 1)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
    
    return img

def draw_label_test(label_file, label_ids, pred_file, pred_ids, img_file):
    
    names = os.listdir(label_file)
    names = sorted(names)
    
    plt.rcParams['axes.unicode_minus'] = False
    
    #解决中文乱码问题
    font_path = '/home/xx/Downloads/chinese.simhei.ttf'
    mpl.font_manager.fontManager.addfont(font_path)  
    mpl.rc('font', family='SimHei')
    
    fig = plt.figure(figsize=(12, 8))
    ax1 = fig.add_subplot(141, projection='3d')
    ax2 = fig.add_subplot(142, projection='3d')
    ax3 = fig.add_subplot(143, projection='3d')
    ax4 = fig.add_subplot(144)
    
    ax1.view_init(elev=29, azim=-60)
    ax2.view_init(elev=16, azim=-75)
    ax3.view_init(elev=18, azim=-73)
         
    
    output_video = './3d_pose_animation.mp4'
    fps=10
    videwrite = imageio.get_writer(uri=output_video, fps=fps)
    
    plt.ion() 
    for name in names:
        na = name[:-3] + 'txt'
        ax1.cla()
        ax2.cla()
        ax3.cla()
        ax4.cla()
        
        ax1.title.set_text("标签结果结果")
        ax2.title.set_text("模型算法结果")
        ax3.title.set_text("标签和算法结果")
        ax4.title.set_text("原始图片")
        
        label_path = os.path.join(label_file, name)
        pred_path = os.path.join(pred_file, na)
        if os.path.exists(label_path) == False:
            continue
        
        l_data_3d, _ = read_label(label_path)
        p_data_3d = pred_label(pred_path)
        
        l_data_3d *= 100
        l_new_data_3d = l_data_3d[..., [0, 2, 1]]
        l_new_data_3d[..., 2] = 200 - l_new_data_3d[..., 2]
        
        p_data_3d *= 100
        p_new_data_3d = p_data_3d[..., [0, 2, 1]]
        p_new_data_3d[..., 2] = 200 - p_new_data_3d[..., 2]        
        
        img_name = name[:-3] + 'png'
        img_path = os.path.join(img_file, img_name)
        img = np.array(Image.open(img_path)) 
        draw3Dpose(l_new_data_3d, p_new_data_3d, ax1, ax2, ax3, label_ids, pred_ids)
        ax4.imshow(img)
        
        #plt.pause(0.01)
        frame_vis = get_img_from_fig(fig)
        videwrite.append_data(frame_vis)
                
    
    videwrite.close()
    plt.tight_layout()
 
    plt.ioff()
    print("save out video")
    plt.show()

if __name__ == "__main__":
	label_path = '/home/xx/Desktop/simcc_3d/temp/select_label_txt'
    pred_path  = '/home/xx/Desktop/simcc_3d/temp/out_txt'
    img_file   = '/home/xx/Desktop/simcc_3d/temp/val_img'
	
	label_ids = [[0, 1, 1], [1, 2, 1], [1, 3, 1], [1, 4, 1], [3, 5, 1], 
                 [5, 7, 1], [4, 6, 1], [6, 8, 1],
                 ]
    
    
    pred_ids = [[0, 6, 0], [6, 8, 0], [8, 10, 0], [0, 5, 0], [5, 7, 0], 
                [7, 9, 0], [0, 0, 0], [0, 0, 0],
                 ]
    
    draw_label_test(label_path, label_ids, pred_path, pred_ids, img_file)

四总结

以上代码都是只是演示,只适用于我自己的场景,其他场景需要修改标签数据,关键点连接关系,该代码仅供参考,不可照搬。

相关推荐
AndrewHZ3 小时前
【图像处理基石】什么是光栅化?
图像处理·人工智能·算法·计算机视觉·3d·图形渲染·光栅化
二狗哈4 小时前
Cesium快速入门33:tile3d设置样式
3d·状态模式·webgl·cesium·地图可视化
接着奏乐接着舞。6 小时前
3D地球可视化教程 - 第6篇:蜂巢网格与自定义几何体
前端·vue.js·3d·threejs
戴西软件8 小时前
戴西软件3DViz Convert:解锁三维数据流动,驱动一体化协同设计
大数据·人工智能·安全·3d·华为云·云计算
军军君011 天前
Three.js基础功能学习一:环境资源及基础知识
开发语言·javascript·学习·3d·前端框架·threejs·三维
EliseL1 天前
SuperMap iClient3D for WebGL如何加载iDesktopX 场景美化绘制资产
3d·webgl·三维
KoalaShane1 天前
Web 3D设计[Three.js]关于右键点击Canvas旋转模型,在其他元素上触发右键菜单问题
前端·javascript·3d
xwz小王子1 天前
Mini3DV 2025 | 观点总结:具身智能前沿与展望
人工智能·3d
扯淡的闲人1 天前
【本地 3D 渲染引擎深度开发 (Developer‘s Bible)】
3d
啊西:2 天前
SuperMap iClient3D for WebGL平面场景实现绘制任意面进行GPU空间查询
平面·3d·webgl