PySpark学习笔记4-共享变量,内核调度

共享变量

解决方案一-广播变量

将本地列表标记成广播变量

可以实现降低内存占用和减少网络IO传输,提高性能

python 复制代码
boradcast = sc.boardcast(stu_info_list)
value = broadcast.value

解决方案二-累加器

python 复制代码
acmlt = sc.accumulator(0)

可以收集执行器的执行结果并作用在自己的身上
Spark内核调度

DAG:有向五环图

一个action会产生一个DAG

一个DAG运行会产生一个job

一个代码运行起来包含叫做Application,包含多job

DAG和分区关联后,可以得到有分区关系的DAG图
DAG的宽窄依赖和阶段划分

窄依赖:父RDD的一个分区,将全部数据发给子RDD的一个分区

宽依赖: 父RDD的一个分区会将数据发给子RDD的多个分区

宽依赖还有一个别名shuffle

对于Spark过程,会按照宽依赖划分不同的DAG阶段,从后向前,遇到一个宽依赖就换分出一个阶段,成为stage,二每个stage的内部一定都是窄依赖
面试题1

spark怎么做内存计算的?DAG的作用?stage阶段划分的作用?

spark会使用DAG图进行内存计算,DAG图会根据分区和宽窄依赖划分阶段,每一个阶段饿的内部都是窄依赖,这些内存迭代计算的管道形成一个个具体的执行任务,一个任务对应一个线程,任务在线程中运行,就是在进行内存计算。
面试题2

spark为什么mapreduce计算效率快?

spark的算子丰富,mapreduce算子匮乏,很多复杂的人物需要多个mapreduc进行串联,通过磁盘交互数据

spark可以执行内存迭代,听过形成DAG并基于依赖划分阶段后,在阶段内可以形成内存迭代管道,但是map使用硬盘进行交互的,spark可以使用更多的内存计算而不是磁盘迭代

spark程序的调度流程如图所示

1.driver被构建出来

2.构建spark Context:执行环境入口对象

3.基于DAG调度器构建逻辑任务分配

4.基于任务调度器将逻辑任务分配到各个执行器上干活,并监控他们

5.执行器被任务调度器监控,听从他们的指令工作,并定期汇报工作进度

driver的两个重要组件:DAG调度器和task调度器

相关推荐
使一颗心免于哀伤6 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
_落纸2 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
Alice-YUE2 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽2 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫2 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 天前
量子计算学习(第十四周周报)
学习·量子计算