1-【选修】逻辑回归

1 Logistic Regression

1.1 step1: Function Set

--

1.2 Step2: Goodness of a Function

cross entropy 衡量两个分布有多接近

1.3 Step3: Find the best function

1.4 Review

2 why not Logsitic Regression + Square Error?

3 Discriminative V.S. Generative

Logistics模型没有假设,但generative假设样本的probability distribution为高斯?朴素贝叶斯?等

3.1 which one is better

通常认为discriminative比generative要好

如上图所示,在Naive Bayes中并没有考虑不同dimension之间的correlation。所以generative模型中假定的probability distribution有可能会脑补出不应该有的条件

3.2 Benefit of generative model

4 Multi-class Classification

3 classes as example

5 Limitation of Logistic Regression

5.1 Feature Transformation

5.2 Cascading Logistic Regression Models

让机器自己学习找到好的feature transformation

这样机器自己学习后进行了feature transformation,从 x 1 , x 2 x_1, x_2 x1,x2转到 x 1 ′ , x 2 ′ x'_1, x'_2 x1′,x2′,再通过转化后的feature进行分类

Neural Network就来咯

相关推荐
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊7 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
小陈phd8 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习
Morpheon8 小时前
揭开预训练Pre-Training的力量:革新机器学习
人工智能·机器学习
勤奋的大熊猫8 小时前
机器学习中的 Agent 是什么?
人工智能·机器学习·agent
Blossom.1188 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
明朝百晓生8 小时前
深入理解Vapnik-Chervonenkis(VC)维度:机器学习泛化能力的理论基础
人工智能·机器学习
信息快讯8 小时前
机器学习驱动的智能化电池管理技术与应用
人工智能·机器学习·锂离子电池