1-【选修】逻辑回归

1 Logistic Regression

1.1 step1: Function Set

--

1.2 Step2: Goodness of a Function

cross entropy 衡量两个分布有多接近

1.3 Step3: Find the best function

1.4 Review

2 why not Logsitic Regression + Square Error?

3 Discriminative V.S. Generative

Logistics模型没有假设,但generative假设样本的probability distribution为高斯?朴素贝叶斯?等

3.1 which one is better

通常认为discriminative比generative要好

如上图所示,在Naive Bayes中并没有考虑不同dimension之间的correlation。所以generative模型中假定的probability distribution有可能会脑补出不应该有的条件

3.2 Benefit of generative model

4 Multi-class Classification

3 classes as example

5 Limitation of Logistic Regression

5.1 Feature Transformation

5.2 Cascading Logistic Regression Models

让机器自己学习找到好的feature transformation

这样机器自己学习后进行了feature transformation,从 x 1 , x 2 x_1, x_2 x1,x2转到 x 1 ′ , x 2 ′ x'_1, x'_2 x1′,x2′,再通过转化后的feature进行分类

Neural Network就来咯

相关推荐
Blossom.118几秒前
从单点工具到智能流水线:企业级多智能体AI开发工作流架构实战
人工智能·笔记·python·深度学习·神经网络·架构·whisper
2401_841495642 分钟前
【机器学习】标准化流模型(NF)
人工智能·python·机器学习·标准化流模型·概率生成模型·可逆变换·概率密度变换
AndrewHZ7 分钟前
【AI黑话日日新】什么是隐式CoT?
人工智能·深度学习·算法·llm·cot·复杂推理
源于花海8 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不懒不懒10 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60011 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
小鸡吃米…12 小时前
机器学习中的代价函数
人工智能·python·机器学习
All The Way North-13 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑14 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh14 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习