机器学习sklearn:决策树的参数、属性、接口

决策树有八个参数:Criterion,两个随机性相关的参数(random_state,splitter),五个剪枝参数(max_depth, min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)

一个属性:feature_importances_

四个接口:fit,score,apply,predict

样例:

python 复制代码
import numpy as np
import pandas as pd
from PIL.ImageColor import colormap
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine
from sklearn import tree

wine = load_wine()

Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)


clf = tree.DecisionTreeClassifier(criterion='entropy'
                                  , random_state=30
                                  , splitter='random'
                                  , min_samples_split=10
                                  , min_samples_leaf=10
                                  , max_depth=10)

clf = clf.fit(Xtrain, Ytrain)
clf.feature_importances_
clf.apply(Xtest)
clf.predict(Xtest)

一、参数

1、criterion

参数默认gini,还有entropy,想要高拟合就用entropy

2、random_state

设置数字就是固定随机选择的种子,每次运行都一样

3、splitter

默认是"best",高拟合

担心拟合高了或特征太多就用"random"

4、max_depth

树生长的最大深度,通常是限制拟合过高的情况

5、min_samples_split,min_samples_leaf

要到min_samples_split个样本才会考虑继续分裂,分裂后的子节点不能少于min_samples_leaf

6、max_features

特征个数

二、属性

1、feature_importances_

显示每个特征的重要性

三、接口

1、fit

训练

2、score

正确率

3、predict

预测结果是哪一组

4、apply

叶子节点的索引

相关推荐
渡我白衣33 分钟前
导论:什么是机器学习?——破除迷思,建立全景地图
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
Hcoco_me42 分钟前
机器学习核心概念与主流算法(通俗详细版)
人工智能·算法·机器学习·数据挖掘·聚类
Jerryhut1 小时前
sklearn函数总结十二 —— 聚类分析算法K-Means
算法·kmeans·sklearn
空中湖1 小时前
[特殊字符] 圣诞愿望池 - 一个充满魔力的在线许愿平台
人工智能·机器学习
cr_每天进步一点点1 小时前
【无标题】
人工智能·python·机器学习
救救孩子把1 小时前
43-机器学习与大模型开发数学教程-4-5 期望、方差、协方差与相关系数
人工智能·机器学习
小陈又菜1 小时前
【计算机网络】网络层知识体系全解:从基础概念到路由协议
服务器·人工智能·计算机网络·机器学习·智能路由器
渡我白衣1 小时前
计算机组成原理(8):各种码的作用详解
c++·人工智能·深度学习·神经网络·其他·机器学习
黑客思维者1 小时前
机器学习016:监督学习【分类算法】(支持向量机)-- “分类大师”入门指南
人工智能·学习·机器学习·支持向量机·分类·回归·监督学习
Blossom.1181 小时前
多模态大模型实战:从零实现CLIP与电商跨模态检索系统
python·web安全·yolo·目标检测·机器学习·目标跟踪·开源软件