机器学习sklearn:决策树的参数、属性、接口

决策树有八个参数:Criterion,两个随机性相关的参数(random_state,splitter),五个剪枝参数(max_depth, min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)

一个属性:feature_importances_

四个接口:fit,score,apply,predict

样例:

python 复制代码
import numpy as np
import pandas as pd
from PIL.ImageColor import colormap
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine
from sklearn import tree

wine = load_wine()

Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)


clf = tree.DecisionTreeClassifier(criterion='entropy'
                                  , random_state=30
                                  , splitter='random'
                                  , min_samples_split=10
                                  , min_samples_leaf=10
                                  , max_depth=10)

clf = clf.fit(Xtrain, Ytrain)
clf.feature_importances_
clf.apply(Xtest)
clf.predict(Xtest)

一、参数

1、criterion

参数默认gini,还有entropy,想要高拟合就用entropy

2、random_state

设置数字就是固定随机选择的种子,每次运行都一样

3、splitter

默认是"best",高拟合

担心拟合高了或特征太多就用"random"

4、max_depth

树生长的最大深度,通常是限制拟合过高的情况

5、min_samples_split,min_samples_leaf

要到min_samples_split个样本才会考虑继续分裂,分裂后的子节点不能少于min_samples_leaf

6、max_features

特征个数

二、属性

1、feature_importances_

显示每个特征的重要性

三、接口

1、fit

训练

2、score

正确率

3、predict

预测结果是哪一组

4、apply

叶子节点的索引

相关推荐
Godspeed Zhao29 分钟前
自动驾驶中的传感器技术34——Lidar(9)
人工智能·机器学习·自动驾驶
山烛1 小时前
矿物分类系统开发笔记(二):模型训练[删除空缺行]
人工智能·笔记·python·机器学习·分类·数据挖掘
硅谷秋水3 小时前
在相机空间中落地动作:以观察为中心的视觉-语言-行动策略
机器学习·计算机视觉·语言模型·机器人
游戏AI研究所3 小时前
ComfyUI 里的 Prompt 插值器(prompt interpolation / text encoder 插值方式)的含义和作用!
人工智能·游戏·机器学习·stable diffusion·prompt·aigc
Chirp3 小时前
BS-RoFormer,目前音频分离SOTA
人工智能·机器学习
九章云极AladdinEdu3 小时前
Scikit-learn通关秘籍:从鸢尾花分类到房价预测
人工智能·python·机器学习·分类·scikit-learn·gpu算力
停停的茶5 小时前
决策树(2)
算法·决策树·机器学习
.银河系.14 小时前
8.18 机器学习-决策树(1)
人工智能·决策树·机器学习
若天明16 小时前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn
wwww.bo16 小时前
机器学习(决策树)
算法·决策树·机器学习