如何用通俗易懂的方式解释大模型中的SFT,SFT过程需要大量标记的prompt和response吗?

想象你在培训一个超级助理

假设你新买了一个智能管家机器人,它已经看过海量的书籍和资料**(这就是预训练过程)**。但是呢,它还不太懂得"做人的艺术"------不知道该用什么语气说话、怎么回应你的需求。

现在你要训练它成为一个得体的助理,这就是SFT要做的事情。

SFT其实就是在教机器人"做人"

训练过程大概是这样的:

你:天气真好啊!
理想回复:是的呢!今天阳光明媚,特别适合出去散步。需要我帮您查查附近有什么适合散步的地方吗?
糟糕回复:根据气象数据显示,当前气温23.5度,湿度45%,风速3级...

通过这样的示例,我们在教机器人:不要像个气象站一样冰冷地报数据,要学会共情,给出温暖的回应,要懂得适时提供帮助。

那到底需要多少训练数据呢?

这个问题特别有意思!实际上,现在的研究发现:不需要想象中那么多数据。

就像教小孩子礼貌用语,你不需要给他展示10000个说"谢谢"的场景,只要有足够典型的例子,他就能举一反三,关键是这些例子要有代表性、高质量。

现在的研究表明,用大约1万-10万条高质量对话数据就能取得不错的效果。这些数据需要覆盖:基本的对话礼仪、常见任务的处理方式、特殊情况的应对策略。

但是也需要注意:少即是多

就像李小龙的名言:"我不怕会一万种踢法的人,我怕把一种踢法练一万次的人。"

在SFT中也是类似的道理,与其收集100万条质量一般的数据,不如精心准备10万条优质示例。质量 > 数量


有趣的是,现在研究发现,有时候模型在SFT后会表现出一些意想不到的能力,就像你教小孩子说"谢谢",他可能自己悟出来还要说"不客气"一样~

觉得这个解释有帮助的话,欢迎点赞关注,我是旷野,探索无尽技术!

相关推荐
政安晨1 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信10 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_8362358610 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活