如何用通俗易懂的方式解释大模型中的SFT,SFT过程需要大量标记的prompt和response吗?

想象你在培训一个超级助理

假设你新买了一个智能管家机器人,它已经看过海量的书籍和资料**(这就是预训练过程)**。但是呢,它还不太懂得"做人的艺术"------不知道该用什么语气说话、怎么回应你的需求。

现在你要训练它成为一个得体的助理,这就是SFT要做的事情。

SFT其实就是在教机器人"做人"

训练过程大概是这样的:

你:天气真好啊!
理想回复:是的呢!今天阳光明媚,特别适合出去散步。需要我帮您查查附近有什么适合散步的地方吗?
糟糕回复:根据气象数据显示,当前气温23.5度,湿度45%,风速3级...

通过这样的示例,我们在教机器人:不要像个气象站一样冰冷地报数据,要学会共情,给出温暖的回应,要懂得适时提供帮助。

那到底需要多少训练数据呢?

这个问题特别有意思!实际上,现在的研究发现:不需要想象中那么多数据。

就像教小孩子礼貌用语,你不需要给他展示10000个说"谢谢"的场景,只要有足够典型的例子,他就能举一反三,关键是这些例子要有代表性、高质量。

现在的研究表明,用大约1万-10万条高质量对话数据就能取得不错的效果。这些数据需要覆盖:基本的对话礼仪、常见任务的处理方式、特殊情况的应对策略。

但是也需要注意:少即是多

就像李小龙的名言:"我不怕会一万种踢法的人,我怕把一种踢法练一万次的人。"

在SFT中也是类似的道理,与其收集100万条质量一般的数据,不如精心准备10万条优质示例。质量 > 数量


有趣的是,现在研究发现,有时候模型在SFT后会表现出一些意想不到的能力,就像你教小孩子说"谢谢",他可能自己悟出来还要说"不客气"一样~

觉得这个解释有帮助的话,欢迎点赞关注,我是旷野,探索无尽技术!

相关推荐
卧式纯绿10 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
巷95517 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网1 小时前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai