如何用通俗易懂的方式解释大模型中的SFT,SFT过程需要大量标记的prompt和response吗?

想象你在培训一个超级助理

假设你新买了一个智能管家机器人,它已经看过海量的书籍和资料**(这就是预训练过程)**。但是呢,它还不太懂得"做人的艺术"------不知道该用什么语气说话、怎么回应你的需求。

现在你要训练它成为一个得体的助理,这就是SFT要做的事情。

SFT其实就是在教机器人"做人"

训练过程大概是这样的:

你:天气真好啊!
理想回复:是的呢!今天阳光明媚,特别适合出去散步。需要我帮您查查附近有什么适合散步的地方吗?
糟糕回复:根据气象数据显示,当前气温23.5度,湿度45%,风速3级...

通过这样的示例,我们在教机器人:不要像个气象站一样冰冷地报数据,要学会共情,给出温暖的回应,要懂得适时提供帮助。

那到底需要多少训练数据呢?

这个问题特别有意思!实际上,现在的研究发现:不需要想象中那么多数据。

就像教小孩子礼貌用语,你不需要给他展示10000个说"谢谢"的场景,只要有足够典型的例子,他就能举一反三,关键是这些例子要有代表性、高质量。

现在的研究表明,用大约1万-10万条高质量对话数据就能取得不错的效果。这些数据需要覆盖:基本的对话礼仪、常见任务的处理方式、特殊情况的应对策略。

但是也需要注意:少即是多

就像李小龙的名言:"我不怕会一万种踢法的人,我怕把一种踢法练一万次的人。"

在SFT中也是类似的道理,与其收集100万条质量一般的数据,不如精心准备10万条优质示例。质量 > 数量


有趣的是,现在研究发现,有时候模型在SFT后会表现出一些意想不到的能力,就像你教小孩子说"谢谢",他可能自己悟出来还要说"不客气"一样~

觉得这个解释有帮助的话,欢迎点赞关注,我是旷野,探索无尽技术!

相关推荐
THMAIL21 分钟前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%23 分钟前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_24 分钟前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x30 分钟前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习
骥龙1 小时前
XX汽集团数字化转型:全生命周期网络安全、数据合规与AI工业物联网融合实践
人工智能·物联网·web安全
zskj_qcxjqr1 小时前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
Ven%1 小时前
第一章 神经网络的复习
人工智能·深度学习·神经网络
研梦非凡2 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代2 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
每日新鲜事2 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能