3DGabor滤波器实现人脸特征提取

python 复制代码
import cv2
import numpy as np

# 定义 Gabor 滤波器的参数
kSize = 31  # 滤波器核的大小
g_sigma = 3.0  # 高斯包络的标准差
g_theta = np.pi / 4  # Gabor 函数的方向
g_lambda = 10.0  # 正弦波的波长
g_gamma = 0.5  # 空间纵横比
g_psi = np.pi / 2  # 相位偏移

# 生成 Gabor 滤波器核
kernel = cv2.getGaborKernel((kSize, kSize), g_sigma, g_theta, g_lambda, g_gamma, g_psi, ktype=cv2.CV_32F)

# 读取多波段图像
image = cv2.imread('1.png', cv2.IMREAD_UNCHANGED)

# 获取图像的波段数
num_bands = image.shape[2] if len(image.shape) == 3 else 1

# 初始化处理后的多波段图像
filtered_image = np.zeros_like(image, dtype=np.float32)

# 遍历每个波段
for band in range(num_bands):
    # 提取当前波段
    band_image = image[:, :, band] if len(image.shape) == 3 else image

    # 应用 Gabor 滤波器
    filtered_band_image = cv2.filter2D(band_image, cv2.CV_32F, kernel)

    # 将处理后的波段放回结果图像中
    if len(image.shape) == 3:
        filtered_image[:, :, band] = filtered_band_image
    else:
        filtered_image = filtered_band_image

# 将处理后的图像转换为合适的数据类型
filtered_image = np.clip(filtered_image, 0, 255).astype(np.uint8)

# 显示结果
if num_bands == 3:
    cv2.imshow('Original Image', image)
    cv2.imshow('Filtered Image', filtered_image)
else:
    for band in range(num_bands):
        cv2.imshow(f'Original Band {band + 1}', image[:, :, band] if len(image.shape) == 3 else image)
        cv2.imshow(f'Filtered Band {band + 1}', filtered_image[:, :, band] if len(image.shape) == 3 else filtered_image)

# 保存结果
cv2.imwrite('filtered_multiband_image.png', filtered_image)

# 等待按键,然后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()


相关推荐
零号机12 分钟前
使用TRAE 30分钟极速开发一款划词中英互译浏览器插件
前端·人工智能
FunTester13 分钟前
基于 Cursor 的智能测试用例生成系统 - 项目介绍与实施指南
人工智能·ai·大模型·测试用例·实践指南·curor·智能测试用例
SEO_juper20 分钟前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销
淮雵的Blog34 分钟前
langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别
人工智能
Mintopia38 分钟前
🚀 共绩算力:3分钟拥有自己的文生图AI服务-容器化部署 StableDiffusion1.5-WebUI 应用
前端·人工智能·aigc
HPC_C44 分钟前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
王哈哈^_^1 小时前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
songyuc1 小时前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
码界奇点1 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马2 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体