【深度学习入门_基础篇】概率论

开坑本部分主要为基础知识复习,新开坑中,学习记录自用。

学习目标: 随机事件与概率、随机变量及其分布、多维随机变量及其分布、大数定律与中心极限定理。

强烈推荐此视频:

概率论_麻省理工公开课

废话不多说,直接看视频回顾即可。

记录几个关键概念

## 随机事件与概率

(1)常用分布的概率母函数表

(2)常用分布的特征函数表

(3)大数定律和中心极限定理的条件表

一、随机事件与概率

(1)排列公式

(2)组合公式

(3)条件概率

(4)全概率

(5)贝叶斯公式

二、随机变量及分布

(1)离散随机变量期望

(2)连续随机变量期望

(3)期望性质

(4)方差与标准差的定义

(5)方差的性质

(6)切比雪夫不等式

(7)二项分布

(8)泊松分布

(9)均匀分布

(10)指数分布

(11)正态分布



三、随机变量及分布

(1)多维随机变量的定义

(2)联合分布函数

(3)联合分布列(对于离散随机变量)

(4)联合密度函数(对于连续随机变量)

四、大数定律与中心极限定理

(1)概率母函数

(2)大数定律一般形式

(3)伯努利大数定律

(4)切比雪夫大数定律

(5)马尔可夫大数定律

(6)中心极限定理

(6.1)林德伯格-莱维中心极限定理(独立同分布的中心极限定理)

(6.2)棣莫佛-拉普拉斯中心极限定理(二项分布的正态近似)

(6.3)林德伯格中心极限定理(独立不同分布下的中心极限定理)

(6.4)李雅普诺夫中心极限定理(林德伯格中心极限定理的推论)

上述概率论知识点: https://studyincau.github.io/2024/05/04/gai-lu-lun-5-1-gai-lu-lun-qi-mo-fu-xi-zhi-shi-dian/index.html

相关推荐
CoovallyAIHub1 小时前
工业视觉检测:多模态大模型的诱惑
深度学习·算法·计算机视觉
shangjian0072 小时前
AI大模型-核心概念-深度学习
人工智能·深度学习
PeterClerk3 小时前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
All The Way North-3 小时前
PyTorch从零实现CIFAR-10图像分类:保姆级教程,涵盖数据加载、模型搭建、训练与预测全流程
pytorch·深度学习·cnn·图像分类·实战项目·cifar-10·gpu加速
绿洲-_-3 小时前
MBHM_DATASET_GUIDE
深度学习·机器学习
AI街潜水的八角3 小时前
深度学习洪水分割系统2:含训练测试代码和数据集
人工智能·深度学习
llddycidy4 小时前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
AI小怪兽5 小时前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机
一招定胜负5 小时前
图像形态学+边缘检测及CNN关联
人工智能·深度学习·cnn
没学上了5 小时前
VLM-单头自注意力机制核心逻辑
人工智能·pytorch·深度学习