【深度学习入门_基础篇】概率论

开坑本部分主要为基础知识复习,新开坑中,学习记录自用。

学习目标: 随机事件与概率、随机变量及其分布、多维随机变量及其分布、大数定律与中心极限定理。

强烈推荐此视频:

概率论_麻省理工公开课

废话不多说,直接看视频回顾即可。

记录几个关键概念

## 随机事件与概率

(1)常用分布的概率母函数表

(2)常用分布的特征函数表

(3)大数定律和中心极限定理的条件表

一、随机事件与概率

(1)排列公式

(2)组合公式

(3)条件概率

(4)全概率

(5)贝叶斯公式

二、随机变量及分布

(1)离散随机变量期望

(2)连续随机变量期望

(3)期望性质

(4)方差与标准差的定义

(5)方差的性质

(6)切比雪夫不等式

(7)二项分布

(8)泊松分布

(9)均匀分布

(10)指数分布

(11)正态分布



三、随机变量及分布

(1)多维随机变量的定义

(2)联合分布函数

(3)联合分布列(对于离散随机变量)

(4)联合密度函数(对于连续随机变量)

四、大数定律与中心极限定理

(1)概率母函数

(2)大数定律一般形式

(3)伯努利大数定律

(4)切比雪夫大数定律

(5)马尔可夫大数定律

(6)中心极限定理

(6.1)林德伯格-莱维中心极限定理(独立同分布的中心极限定理)

(6.2)棣莫佛-拉普拉斯中心极限定理(二项分布的正态近似)

(6.3)林德伯格中心极限定理(独立不同分布下的中心极限定理)

(6.4)李雅普诺夫中心极限定理(林德伯格中心极限定理的推论)

上述概率论知识点: https://studyincau.github.io/2024/05/04/gai-lu-lun-5-1-gai-lu-lun-qi-mo-fu-xi-zhi-shi-dian/index.html

相关推荐
爱吃泡芙的小白白2 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
YelloooBlue2 小时前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow
AI即插即用3 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
逄逄不是胖胖3 小时前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
咚咚王者3 小时前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
机 _ 长4 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
美狐美颜sdk5 小时前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api
Yeats_Liao5 小时前
异步推理架构:CPU-NPU流水线设计与并发效率提升
python·深度学习·神经网络·架构·开源
哥布林学者6 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(一)seq2seq 模型
深度学习·ai
gsgbgxp7 小时前
WSL迁移至非系统盘
深度学习·ubuntu