【深度学习入门_基础篇】概率论

开坑本部分主要为基础知识复习,新开坑中,学习记录自用。

学习目标: 随机事件与概率、随机变量及其分布、多维随机变量及其分布、大数定律与中心极限定理。

强烈推荐此视频:

概率论_麻省理工公开课

废话不多说,直接看视频回顾即可。

记录几个关键概念

## 随机事件与概率

(1)常用分布的概率母函数表

(2)常用分布的特征函数表

(3)大数定律和中心极限定理的条件表

一、随机事件与概率

(1)排列公式

(2)组合公式

(3)条件概率

(4)全概率

(5)贝叶斯公式

二、随机变量及分布

(1)离散随机变量期望

(2)连续随机变量期望

(3)期望性质

(4)方差与标准差的定义

(5)方差的性质

(6)切比雪夫不等式

(7)二项分布

(8)泊松分布

(9)均匀分布

(10)指数分布

(11)正态分布



三、随机变量及分布

(1)多维随机变量的定义

(2)联合分布函数

(3)联合分布列(对于离散随机变量)

(4)联合密度函数(对于连续随机变量)

四、大数定律与中心极限定理

(1)概率母函数

(2)大数定律一般形式

(3)伯努利大数定律

(4)切比雪夫大数定律

(5)马尔可夫大数定律

(6)中心极限定理

(6.1)林德伯格-莱维中心极限定理(独立同分布的中心极限定理)

(6.2)棣莫佛-拉普拉斯中心极限定理(二项分布的正态近似)

(6.3)林德伯格中心极限定理(独立不同分布下的中心极限定理)

(6.4)李雅普诺夫中心极限定理(林德伯格中心极限定理的推论)

上述概率论知识点: https://studyincau.github.io/2024/05/04/gai-lu-lun-5-1-gai-lu-lun-qi-mo-fu-xi-zhi-shi-dian/index.html

相关推荐
MarkHD20 小时前
智能体在车联网中的应用:第13天 深度学习入门:前向传播与反向传播的数学本质与PyTorch/TensorFlow实践
pytorch·深度学习·tensorflow
java1234_小锋20 小时前
Transformer 大语言模型(LLM)基石 - 构建完整的Transformer模型
深度学习·语言模型·transformer
神一样的老师20 小时前
混合大语言模型与强化学习用于高能效多星调度:从零开始的性能提升
人工智能·深度学习·语言模型
AI浩1 天前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
Coding茶水间1 天前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Niuguangshuo1 天前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
haiyu_y1 天前
Day 46 TensorBoard 使用介绍
人工智能·深度学习·神经网络
不惑_1 天前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo1 天前
自定义数据在深度学习中的应用方法
人工智能·深度学习
人工智能培训1 天前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体