Attention计算中的各个矩阵的维度都是如何一步步变化的?

在Transformer模型中,各个矩阵的维度变化是一个关键的过程,涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程:

输入阶段

  • 输入序列 :假设输入序列的长度为seq_len,每个单词或标记通过词嵌入(word embedding)转换为一个固定维度的向量,维度为d_model。因此,输入矩阵的维度为(seq_len, d_model)
  • 位置编码 :位置编码(Positional Encoding)通常与词嵌入向量相加,以提供序列中每个单词的位置信息。位置编码的维度与词嵌入相同,即(seq_len, d_model)

编码器(Encoder)阶段

  • 多头注意力机制(Multi-Head Attention)

    • 查询(Q)、键(K)、值(V)矩阵 :输入矩阵与权重矩阵相乘得到Q、K、V矩阵。假设每个头的维度为d_k(通常d_k = d_model / num_heads),则Q、K、V的维度为(seq_len, d_k)
    • 注意力计算 :Q与K的转置相乘,得到一个注意力得分矩阵,维度为(seq_len, seq_len)。经过softmax处理后,再与V相乘,得到输出矩阵,维度为(seq_len, d_k)
    • 多头拼接 :将所有头的输出拼接或平均,得到最终的输出矩阵,维度为(seq_len, d_model)
  • 前馈神经网络(Feed-Forward Network)

    • 输入矩阵经过两个线性变换和非线性激活函数,最终输出的维度保持为(seq_len, d_model)

解码器(Decoder)阶段

  • 掩码多头注意力机制(Masked Multi-Head Attention)

    • 类似于编码器中的多头注意力机制,但使用了掩码来防止解码器在生成时"偷看"未来的信息。输出矩阵的维度为(seq_len, d_model)
  • 编码器-解码器注意力机制

    • 解码器的查询(Q)与编码器的键(K)和值(V)进行注意力计算,输出矩阵的维度为(seq_len, d_model)

输出阶段

  • 线性层和Softmax
    • 解码器的输出经过一个线性层,将维度从(seq_len, d_model)转换为(seq_len, vocab_size),其中vocab_size是词汇表的大小。
    • 最后通过Softmax层,得到每个单词的概率分布,用于预测下一个单词。

这些维度变化确保了Transformer模型能够有效地处理序列数据,并在各个层之间传递和转换信息。

相关推荐
insight^tkk16 小时前
【Docker】记录一次使用docker部署dify网段冲突的问题
运维·人工智能·docker·ai·容器
攻城狮7号16 小时前
AI+大数据时代:如何从架构到生态重构时序数据库的价值?
大数据·人工智能·时序数据库·apache iotdb·sql大模型
智能化咨询16 小时前
AI+大数据时代:时序数据库的生态重构与价值跃迁——从技术整合到行业落地
人工智能
paopaokaka_luck16 小时前
基于SpringBoot+Vue的社区诊所管理系统(AI问答、webSocket实时聊天、Echarts图形化分析)
vue.js·人工智能·spring boot·后端·websocket
工藤学编程16 小时前
零基础学AI大模型之RAG系统链路解析与Document Loaders多案例实战
人工智能
大千AI助手16 小时前
加权分位数直方图:提升机器学习效能的关键技术
人工智能·机器学习·xgboost·直方图·加权直方图·特征分裂
星期天要睡觉16 小时前
深度学习——基于ResNet18迁移学习的图像分类模型
人工智能·python·分类·迁移学习
sunkl_16 小时前
JoyAgent问数多表关联Bug修复
人工智能·自然语言处理
AI数据皮皮侠17 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
强哥之神17 小时前
从零理解 KV Cache:大语言模型推理加速的核心机制
人工智能·深度学习·机器学习·语言模型·llm·kvcache