微服务的CAP定理与数据一致性抉择

分布式系统中的CAP定理,包括一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)三个核心要素。

微服务是分布式系统的一种表现形式,以及用户对于系统是分布式、微服务还是单体的无感知性。

CAP定理概述

1.CAP定理是分布式系统中的基本原则,涉及一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)。

2.微服务作为分布式系统的一种表现形式,也遵循CAP定理。

一致性(Consistency)

1.一致性指的是在分布式系统中,所有计算机节点在同一时刻具有相同的数据。

2.一致性要求用户在某个节点写入数据后,其他节点读取到的数据也是最新的。

3.一致性确保用户无论从哪个节点访问系统,获得的数据都是一致的。

可用性(Availability)

1.可用性指系统在任何时候都可以被用户访问,并提供正常的响应结果。

2.即使系统中的某些节点发生故障,其他节点仍然可以继续为用户提供服务。

3.高可用系统通过集群、主备、熔断等技术手段确保系统的可用性。

分区容错性(Partition Tolerance)

1.分区容错性指系统在出现网络分区时,仍然能够提供一致性和可用性的服务。

2.分布式系统通常部署在不同的节点、机房或地域,网络分区是不可避免的。

3.分区容错性要求系统在部分系统故障的情况下,仍然能够保证整体系统的正常运行。

CAP定理的交集原则

1.CAP定理指出,分布式系统无法同时满足一致性、可用性和分区容错性三个要求。

2.三者只能选择其中两个的交集,即CA、CP或AP。

3.CAP定理是理论上的限制,实际系统中可能通过权衡和取舍来满足特定的需求。

CP系统的特点与应用场景

1.CP系统满足一致性和分区容错性,但性能较低。

2.CP系统通常用于金融等强一致性要求的场景。

3.Redis和MongoDB等中间件就是CP系统的例子。

AP系统的特点与应用场景

1.AP系统满足可用性和分区容错性,但存在数据不一致的情况。

2.AP系统采用弱一致性或最终一致性,适用于互联网大环境。

3.主流的互联网公司和服务都采用AP系统。

一致性抉择:CA与AP的选择

1.在分布式系统中,一致性和可用性之间的权衡是常见的选择。

2.弱一致性或最终一致性被广泛接受,以保障系统的可用性和容错性。

相关推荐
Pasregret1 小时前
多级缓存架构深度解析:从设计原理到生产实践
缓存·架构
国科安芯1 小时前
面向高性能运动控制的MCU:架构创新、算法优化与应用分析
单片机·嵌入式硬件·安全·架构·机器人·汽车·risc-v
matrixlzp1 小时前
K8S Service 原理、案例
云原生·容器·kubernetes
Java技术小馆2 小时前
SpringBoot中暗藏的设计模式
java·面试·架构
Lei活在当下3 小时前
【现代 Android APP 架构】01. APP 架构综述
android·设计模式·架构
孔令飞3 小时前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
前端大白话4 小时前
深入理解 JavaScript 中 async 函数与 await 关键字的执行奥秘
前端·javascript·架构
玄明Hanko4 小时前
Quarkus+Docker最全面完整教程:手把手搞定Java云原生
后端·docker·云原生
Angindem4 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
gs801409 小时前
深度解析:从12306看混合云架构下的高并发系统设计
架构·12306