微服务的CAP定理与数据一致性抉择

分布式系统中的CAP定理,包括一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)三个核心要素。

微服务是分布式系统的一种表现形式,以及用户对于系统是分布式、微服务还是单体的无感知性。

CAP定理概述

1.CAP定理是分布式系统中的基本原则,涉及一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)。

2.微服务作为分布式系统的一种表现形式,也遵循CAP定理。

一致性(Consistency)

1.一致性指的是在分布式系统中,所有计算机节点在同一时刻具有相同的数据。

2.一致性要求用户在某个节点写入数据后,其他节点读取到的数据也是最新的。

3.一致性确保用户无论从哪个节点访问系统,获得的数据都是一致的。

可用性(Availability)

1.可用性指系统在任何时候都可以被用户访问,并提供正常的响应结果。

2.即使系统中的某些节点发生故障,其他节点仍然可以继续为用户提供服务。

3.高可用系统通过集群、主备、熔断等技术手段确保系统的可用性。

分区容错性(Partition Tolerance)

1.分区容错性指系统在出现网络分区时,仍然能够提供一致性和可用性的服务。

2.分布式系统通常部署在不同的节点、机房或地域,网络分区是不可避免的。

3.分区容错性要求系统在部分系统故障的情况下,仍然能够保证整体系统的正常运行。

CAP定理的交集原则

1.CAP定理指出,分布式系统无法同时满足一致性、可用性和分区容错性三个要求。

2.三者只能选择其中两个的交集,即CA、CP或AP。

3.CAP定理是理论上的限制,实际系统中可能通过权衡和取舍来满足特定的需求。

CP系统的特点与应用场景

1.CP系统满足一致性和分区容错性,但性能较低。

2.CP系统通常用于金融等强一致性要求的场景。

3.Redis和MongoDB等中间件就是CP系统的例子。

AP系统的特点与应用场景

1.AP系统满足可用性和分区容错性,但存在数据不一致的情况。

2.AP系统采用弱一致性或最终一致性,适用于互联网大环境。

3.主流的互联网公司和服务都采用AP系统。

一致性抉择:CA与AP的选择

1.在分布式系统中,一致性和可用性之间的权衡是常见的选择。

2.弱一致性或最终一致性被广泛接受,以保障系统的可用性和容错性。

相关推荐
k***1953 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Mr_sun.4 小时前
Day11——微服务高级
微服务·云原生·架构
小毅&Nora4 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构
q***76664 小时前
SDN架构详解
架构
喵个咪5 小时前
基于 Go-Kratos 与 MCP 的推荐服务实战指南
后端·深度学习·微服务
二川bro5 小时前
第57节:Three.js企业级应用架构
开发语言·javascript·架构
优质&青年6 小时前
【Operator pormetheus监控系列四----.alertmanager和Rules服务配置】
运维·云原生·kubernetes·prometheus
没有bug.的程序员6 小时前
Java 字节码:看懂 JVM 的“机器语言“
java·jvm·python·spring·微服务
AKAMAI6 小时前
从 Cloudflare 服务中断,看建立多维度风险应对机制的必要
人工智能·云原生·云计算
没有bug.的程序员6 小时前
JVM 整体架构:一套虚拟机的心脏与血管
java·jvm·spring boot·spring cloud·架构