pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)

pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)/ x @ y


代码

python 复制代码
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
print(torch.matmul(x, y))
print(x @ y)
python 复制代码
>>>
tensor([11, 35])
tensor([11, 35])
python 复制代码
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
y = y.view(4,1)                # y.shape == (4, 1)
'''
tensor([[2],
        [3],
        [1],
        [0]])
'''
print(torch.matmul(x, y))
print(x @ y)
python 复制代码
>>>
tensor([[11],
        [35]])
tensor([[11],
        [35]])

在这段代码中,torch.matmul(x, y) 或者x @ y计算的是矩阵乘法或张量乘法。我们分两种情况详细分析:


代码 1:torch.matmul(x, y)

输入张量:
  • x 是一个 2D 张量,形状为 (2, 4)

    复制代码
    tensor([[1, 2, 3, 4],
            [5, 6, 7, 8]])
  • y 是一个 1D 张量,形状为 (4,)

    复制代码
    tensor([2, 3, 1, 0])
计算逻辑:

在 PyTorch 中,如果 matmul 的一个输入是 2D 张量,另一个是 1D 张量,计算规则是:

  • 将 1D 张量 y 当作列向量 (4, 1),与矩阵 x 进行矩阵乘法。
  • 结果是一个 1D 张量,形状为 (2,)

矩阵乘法公式:
result [ i ] = ∑ j x [ i , j ] ⋅ y [ j ] \text{result}[i] = \sum_j x[i, j] \cdot y[j] result[i]=j∑x[i,j]⋅y[j]

具体计算步骤:

  1. 对第一行 [1, 2, 3, 4]
    ( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (1⋅2)+(2⋅3)+(3⋅1)+(4⋅0)=2+6+3+0=11
  2. 对第二行 [5, 6, 7, 8]
    ( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (5⋅2)+(6⋅3)+(7⋅1)+(8⋅0)=10+18+7+0=35
输出结果:
python 复制代码
torch.matmul(x, y)
# tensor([11, 35])

代码 2:y = y.view(4,1)torch.matmul(x, y)

输入张量:
  • x 是同一个 2D 张量,形状为 (2, 4)

  • y 被重塑为 2D 张量,形状为 (4, 1)

    复制代码
    tensor([[2],
            [3],
            [1],
            [0]])
计算逻辑:

在这种情况下,matmul 执行的是 矩阵乘法 ,两个输入的形状为 (2, 4)(4, 1)

  • 矩阵乘法的规则是:前一个矩阵的列数必须等于后一个矩阵的行数
  • 结果张量的形状是 (2, 1)

矩阵乘法公式:
result [ i , k ] = ∑ j x [ i , j ] ⋅ y [ j , k ] \text{result}[i, k] = \sum_j x[i, j] \cdot y[j, k] result[i,k]=j∑x[i,j]⋅y[j,k]

具体计算步骤:

  1. 对第一行 [1, 2, 3, 4] 和列向量 [[2], [3], [1], [0]]
    ( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (1⋅2)+(2⋅3)+(3⋅1)+(4⋅0)=2+6+3+0=11
  2. 对第二行 [5, 6, 7, 8] 和列向量 [[2], [3], [1], [0]]
    ( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (5⋅2)+(6⋅3)+(7⋅1)+(8⋅0)=10+18+7+0=35
输出结果:
python 复制代码
torch.matmul(x, y)
# tensor([[11],
#         [35]])

总结:两种情况的区别

  1. y 是 1D 张量

    • torch.matmul(x, y) 返回一个 1D 张量 ,形状为 (2,)
    • 相当于将 y 当作列向量,与矩阵 x 做矩阵乘法。
  2. y 是 2D 张量

    • torch.matmul(x, y) 返回一个 2D 张量 ,形状为 (2, 1)
    • 矩阵乘法严格遵守二维矩阵的维度规则。

两者的结果数值相同,但形状不同,主要是因为输入张量的维度不同,导致输出的维度也发生了变化。

相关推荐
小小爱大王23 分钟前
AI 编码效率提升 10 倍的秘密:Prompt 工程 + 工具链集成实战
java·javascript·人工智能
蓝博AI1 小时前
基于卷积神经网络的香蕉成熟度识别系统,resnet50,vgg16,resnet34【pytorch框架,python代码】
人工智能·pytorch·python·神经网络·cnn
野蛮人6号1 小时前
力扣热题100道之73矩阵置零
算法·leetcode·矩阵
CUMT_DJ2 小时前
唐宇迪2025最新机器学习课件——学习心得(1)
人工智能·机器学习
流烟默2 小时前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习
格林威2 小时前
近红外工业相机的简单介绍和场景应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造·工业相机
JJJJ_iii2 小时前
【机器学习07】 激活函数精讲、Softmax多分类与优化器进阶
人工智能·笔记·python·算法·机器学习·分类·线性回归
Pocker_Spades_A2 小时前
机器学习之生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
IT_陈寒2 小时前
Python性能优化:5个被低估但效果惊人的内置函数实战解析
前端·人工智能·后端