使用Flink-JDBC将数据同步到Doris

在现代数据分析和处理环境中,数据同步是一个至关重要的环节。Apache Flink和Doris是两个强大的工具,分别用于实时数据处理和大规模并行处理(MPP)SQL数据库。本文将介绍如何使用Flink-JDBC连接器将数据同步到Doris。

一、背景介绍

1、Apache Flink:Flink是一个开源流处理框架,用于处理无界和有界数据流。它提供了高吞吐量、低延迟的数据处理能力,并支持复杂的状态管理和容错机制。

2、Doris:Doris(原百度Palo)是一个基于MPP架构的高性能、实时分析型数据库。它支持高并发查询和高吞吐量的复杂分析场景,具有亚秒级响应时间,并兼容MySQL协议。

3、JDBC:Java数据库连接(JDBC)是一种Java API,用于连接和操作数据库。Flink提供了JDBC连接器,允许从各种关系型数据库中读取和写入数据。

二、准备工作

1、安装Flink:确保你的环境中已经安装了Apache Flink。本文示例使用的是Flink 1.20.0版本。

2、安装Doris:确保你的环境中已经安装并配置了Doris。

3、准备相关测试数据集(excel)。

4、依赖库:使用flink-connector-jdbc和Doris的JDBC驱动。如果你使用的是Maven,可以在项目的pom.xml文件中添加以下依赖:

java 复制代码
<dependencies>
  <!--    flink-->
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients</artifactId>
    <version>${flink.version}</version>
  </dependency>
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-base</artifactId>
    <version>${flink.version}</version>
  </dependency>
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka</artifactId>
    <version>${flink-kafka.version}</version>
  </dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-jdbc -->
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-jdbc</artifactId>
    <version>${flink-jdbc.version}</version>
  </dependency>

  <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-files</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <!-- flink-doris-connector -->
  <dependency>
    <groupId>org.apache.doris</groupId>
    <artifactId>flink-doris-connector-1.16</artifactId>
    <version>${flink-doris.version}</version>
  </dependency>

  <!--    json处理-->
  <dependency>
    <groupId>com.alibaba.fastjson2</groupId>
    <artifactId>fastjson2</artifactId>
    <version>2.0.53</version>
  </dependency>
  <dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>easyexcel</artifactId>
    <version>4.0.3</version>
  </dependency>

  <dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <version>1.18.36</version>
  </dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core -->
  <dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-core</artifactId>
    <version>2.24.3</version>
  </dependency>
  <dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.27</version>
  </dependency>

  <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>3.8.1</version>
    <scope>test</scope>
  </dependency>
</dependencies>

三、实现步骤

1.读取并解析excel中的测试数据集

java 复制代码
package org.example.day20250105;

import com.alibaba.excel.EasyExcel;
import com.alibaba.excel.context.AnalysisContext;
import com.alibaba.excel.read.listener.ReadListener;
import com.alibaba.excel.support.ExcelTypeEnum;
import org.example.day20250105.domain.*;
import org.example.day20250105.flink.jdbc.OdsXwDetailDataWriteByFlink;

import java.util.ArrayList;
import java.util.List;

public class ExcelDataHandle {
    private static final String filePath = "src/main/resources/20250105/WW2216069019-循环-90-3-1-20230104110446.xlsx";
    /**
     * 每隔5条存储数据库,实际使用中可以100条,然后清理list ,方便内存回收
     */
    private static final int BATCH_COUNT = 1000;
    /**
     * 缓存的数据
     */
    private static List<OdsXwCycleData> odsXwCycleDataList = new ArrayList<>(BATCH_COUNT);
    private static List<OdsXwDetailData> odsXwDetailDataList = new ArrayList<>(BATCH_COUNT);
    private static List<OdsXwStepData> odsXwStepDataList = new ArrayList<>(BATCH_COUNT);
    private static List<OdsTestFlow> odsTestFlowList = new ArrayList<>(BATCH_COUNT);
    private static final OdsTestFlow finalFlow = new OdsTestFlow();

    public static void main(String[] args) {
        EasyExcel.read(filePath, OdsTestFlowDataFormat.class, new OdsTestFlowDataHandle()).sheet(1).doRead();
        System.out.println(odsTestFlowList.add(finalFlow));
        System.out.println(odsTestFlowList);

    }

    public static List<OdsXwCycleData> readCycleData() {
        EasyExcel.read(filePath, OdsXwCycleData.class, new OdsXwCycleDataHandle()).sheet(2).doRead();
        return odsXwCycleDataList;
    }

    public static List<OdsTestFlow> readTestFlowData(){
        EasyExcel.read(filePath, OdsTestFlowDataFormat.class, new OdsTestFlowDataHandle()).sheet(1).doRead();
        return odsTestFlowList;
    }
    public static List<OdsXwStepData> readStepData() {
        EasyExcel.read(filePath, OdsXwStepData.class, new OdsXwStepDataHandle()).excelType(ExcelTypeEnum.XLSX).sheet(3).doRead();
        return odsXwStepDataList;
    }

    public static List<OdsXwDetailData> readDetailData() {
        EasyExcel.read(filePath, OdsXwDetailData.class, new OdsXwDetailDataHandle()).sheet(4).doRead();
        return odsXwDetailDataList;
    }

    /**
     * 新威原始测试流程数据   sheet 1
     */
    public static class OdsTestFlowDataHandle implements ReadListener<OdsTestFlowDataFormat> {
        private static int rowCount = 0;

        @Override
        public void invoke(OdsTestFlowDataFormat format, AnalysisContext analysisContext) {
            if (rowCount > 5) {
                return;
            }
            if (rowCount == 0) {
                finalFlow.setStartStepNo(format.getV1());
                finalFlow.setVoltageUpperLimit(format.getV2());
                finalFlow.setBatteryBatchNumber(format.getV3());
            } else if (rowCount == 1) {
                finalFlow.setCycleTimes(format.getV1());
                finalFlow.setVoltageLowerLimit(format.getV2());
                finalFlow.setCreator(format.getV3());
            } else if (rowCount == 2) {
                finalFlow.setRecordCondition(format.getV1());
                finalFlow.setCurrentUpperLimit(format.getV2());
                finalFlow.setRemark(format.getV3());
            } else if (rowCount == 3) {
                finalFlow.setVoltageRange(format.getV1());
                finalFlow.setCurrentLowerLimit(format.getV2());
            } else if (rowCount == 4) {
                finalFlow.setCurrentRange(format.getV1());
                finalFlow.setStartDatetime(format.getV2());
                finalFlow.setTestBarcode(format.getV3());
            } else if (rowCount == 5) {
                finalFlow.setActiveSubstances(format.getV1());
                finalFlow.setNominalCapacity(format.getV2());
            }
            rowCount++;
        }

        @Override
        public void doAfterAllAnalysed(AnalysisContext analysisContext) {
            odsTestFlowList.add(finalFlow);
        }
    }

    /**
     * 循环数据处理   sheet 2
     */
    public static class OdsXwCycleDataHandle implements ReadListener<OdsXwCycleData> {
        @Override
        public void invoke(OdsXwCycleData odsXwCycleData, AnalysisContext analysisContext) {
            odsXwCycleDataList.add(odsXwCycleData);
//            if (odsXwCycleDataList.size() >= BATCH_COUNT) {
//                // 存储完成清理 list
//                odsXwCycleDataList.clear();
//            }
        }

        @Override
        public void doAfterAllAnalysed(AnalysisContext analysisContext) {

        }
    }

    /**
     * 新威原始详情数据 sheet 4
     */
    public static class OdsXwDetailDataHandle implements ReadListener<OdsXwDetailData> {
        @Override
        public void invoke(OdsXwDetailData odsXwDetailData, AnalysisContext analysisContext) {
            odsXwDetailDataList.add(odsXwDetailData);
            if (odsXwDetailDataList.size() >= BATCH_COUNT) {
                //每1000条去调用存储方法一次
                OdsXwDetailDataWriteByFlink.save(odsXwDetailDataList);
                // 存储完成清理 list
                odsXwDetailDataList.clear();
            }
        }

        @Override
        public void doAfterAllAnalysed(AnalysisContext analysisContext) {

        }
    }

    /**
     * 新威原始工步数据 sheet 3
     */
    public static class OdsXwStepDataHandle implements ReadListener<OdsXwStepData> {
        @Override
        public void invoke(OdsXwStepData odsXwStepData, AnalysisContext analysisContext) {
            odsXwStepDataList.add(odsXwStepData);
        }

        @Override
        public void doAfterAllAnalysed(AnalysisContext analysisContext) {

        }
    }
}

2.通过filnk-jdbc写入到doris中

java 复制代码
package org.example.day20250105.flink;

public interface DorisConstant {
   public static final String FE_NODE_URL = "192.168.12.244:18030";
    String BE_NODE_URL = "192.168.12.244:18030";

    String DORIS_JDBC_URL = "jdbc:mysql://192.168.12.244:19030/test_db_czq";

    String USERNAME = "root";
    String PASSWORD = "*******";
    String DB_NAMME = "test_db_czq";

    String DRIVER_CLASS_NAME = "com.mysql.cj.jdbc.Driver";
}


package org.example.day20250105.flink.jdbc;

import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.example.day20250105.ExcelDataHandle;
import org.example.day20250105.flink.DorisConstant;

/**
 * INSERT INTO `test_db_czq`.`ods_xw_step_data` (`cycle_id`, `step_id`, `step_no`, `step_type`, `step_time`, `start_absolute_time`, `end_absolute_time`, `capacity`, `specific_capacity`, `charge_capacity`, `charge_specific_capacity`, `discharge_capacity`, `discharge_specific_capacity`, `net_discharge_capacity`, `energy`, `specific_energy`, `charge_energy`, `charge_specific_energy`, `discharge_energy`, `discharge_specific_energy`, `net_discharge_energy`, `super_capacitor`, `initial_voltage`, `charge_initial_voltage`, `discharge_initial_voltage`, `end_voltage`, `charge_end_voltage`, `discharge_end_voltage`, `charge_median_voltage`, `discharge_median_voltage`, `initial_current`, `end_current`, `dcir`, `t1_start_temperature`, `t1_end_temperature`, `t1_max_temperature`, `t1_min_temperature`, `v1_start_voltage`, `v1_end_voltage`, `v1_max_voltage`, `v1_min_voltage`, `file_name`) VALUES ('5', '30', '45', '恒流放电', '02:00:19', '2023-01-03 03:47:37', '2023-01-03 05:47:56', '4.0266', '4026648', '0', '0', '4.0266', '4026648', '4.0266', '12.858', '12857977.78', '0', '0', '12.858', '12857977.78', '12.858', '10407.4004', '3.4573', '0', '3.4573', '1.9993', '0', '1.9993', '0', '3.2285', '0', '-2.0089', '0', '25.3', '25.5', '25.6', '25.2', '-0.0003', '-0.0003', '-0.0001', '-0.0003', NULL);
 */
public class OdsXwStepDataWriteByFlink {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.fromData(ExcelDataHandle.readStepData())
                .addSink(JdbcSink.sink(
                        "INSERT INTO `test_db_czq`.`ods_xw_step_data` " +
                                "(`cycle_id`, `step_id`, `step_no`, `step_type`, `step_time`, `start_absolute_time`, " +
                                "`end_absolute_time`, `capacity`, `specific_capacity`, `charge_capacity`, `charge_specific_capacity`," +
                                " `discharge_capacity`, `discharge_specific_capacity`, `net_discharge_capacity`, `energy`, `specific_energy`, " +
                                "`charge_energy`, `charge_specific_energy`, `discharge_energy`, `discharge_specific_energy`, `net_discharge_energy`, " +
                                "`super_capacitor`, `initial_voltage`, `charge_initial_voltage`, `discharge_initial_voltage`, `end_voltage`, `charge_end_voltage`," +
                                " `discharge_end_voltage`, `charge_median_voltage`, `discharge_median_voltage`, `initial_current`, `end_current`, `dcir`, " +
                                "`t1_start_temperature`, `t1_end_temperature`, `t1_max_temperature`, `t1_min_temperature`, `v1_start_voltage`, `v1_end_voltage`, " +
                                "`v1_max_voltage`, `v1_min_voltage`, `file_name`) " +
                                "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);",
                        (ps, data) -> {
                            ps.setString(1, data.getCycle_id());
                            ps.setString(2, data.getStep_id());
                            ps.setString(3, data.getStep_no());
                            ps.setString(4, data.getStep_type());
                            ps.setString(5, data.getStep_time());
                            ps.setString(6, data.getStart_absolute_time());
                            ps.setString(7, data.getEnd_absolute_time());
                            ps.setString(8, data.getCapacity());
                            ps.setString(9, data.getSpecific_capacity());
                            ps.setString(10, data.getCharge_capacity());
                            ps.setString(11, data.getCharge_specific_capacity());
                            ps.setString(12, data.getDischarge_capacity());
                            ps.setString(13, data.getDischarge_specific_capacity());
                            ps.setString(14, data.getNet_discharge_capacity());
                            ps.setString(15, data.getEnergy());
                            ps.setString(16, data.getSpecific_energy());
                            ps.setString(17, data.getCharge_energy());
                            ps.setString(18, data.getCharge_specific_energy());
                            ps.setString(19, data.getDischarge_energy());
                            ps.setString(20, data.getDischarge_specific_energy());
                            ps.setString(21, data.getNet_discharge_energy());
                            ps.setString(22, data.getSuper_capacitor());
                            ps.setString(23, data.getInitial_voltage());
                            ps.setString(24, data.getCharge_initial_voltage());
                            ps.setString(25, data.getDischarge_initial_voltage());
                            ps.setString(26, data.getEnd_voltage());
                            ps.setString(27, data.getCharge_end_voltage());
                            ps.setString(28, data.getDischarge_end_voltage());
                            ps.setString(29, data.getCharge_median_voltage());
                            ps.setString(30, data.getDischarge_median_voltage());
                            ps.setString(31, data.getInitial_current());
                            ps.setString(32, data.getEnd_current());
                            ps.setString(33, data.getDcir());
                            ps.setString(34, data.getT1_start_temperature());
                            ps.setString(35, data.getT1_end_temperature());
                            ps.setString(36, data.getT1_max_temperature());
                            ps.setString(37, data.getT1_min_temperature());
                            ps.setString(38, data.getV1_start_voltage());
                            ps.setString(39, data.getV1_end_voltage());
                            ps.setString(40, data.getV1_max_voltage());
                            ps.setString(41, data.getV1_min_voltage());
                            ps.setString(42, data.getFile_name());
                        },
                        new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                                .withUsername(DorisConstant.USERNAME)
                                .withPassword(DorisConstant.PASSWORD)
                                .withDriverName(DorisConstant.DRIVER_CLASS_NAME)
                                .withUrl(DorisConstant.DORIS_JDBC_URL)
                                .build()
                ));
        env.execute();
    }
}
复制代码

四、实现结果

登录Doris后台可以看到数据已经同步到了ods_xw_step_data表中

相关推荐
倔强的石头1061 小时前
大数据时代下的时序数据库选型指南:基于工业场景的IoTDB技术优势与适用性研究
大数据·时序数据库·iotdb
火火PM打怪中4 小时前
产品经理如何绘制服务蓝图(Service Blueprint)
大数据·产品经理
Elastic 中国社区官方博客12 小时前
在 Windows 上使用 Docker 运行 Elastic Open Crawler
大数据·windows·爬虫·elasticsearch·搜索引擎·docker·容器
一切顺势而行14 小时前
Flink cdc 使用总结
大数据·flink
淦暴尼16 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
expect7g16 小时前
Flink-反压-1.基本概念
后端·flink
Ashlee_code16 小时前
裂变时刻:全球关税重构下的券商交易系统跃迁路线图(2025-2027)
java·大数据·数据结构·python·云原生·区块链·perl
Flink_China16 小时前
淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列
大数据·flink
阿里云大数据AI技术18 小时前
云上AI推理平台全掌握 (4):大模型分发加速
大数据·人工智能·llm
1892280486118 小时前
NW972NW974美光固态闪存NW977NW981
大数据·服务器·网络·人工智能·性能优化