利用平面进行位姿约束优化

cpp 复制代码
/**
 * 设位姿pose存在误差,利用观测到的平面进行位姿pose优化,只优化位姿pose的z轴平移和roll,pitch,yaw四个变量,要求优化后的pose,z轴与平面的z一致。请修改代码实现这个功能
 * 
 * 
 */
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/geometry/OrientedPlane3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <boost/optional.hpp>
#include <iostream>

using namespace gtsam;

// 自定义因子类
class CustomOrientedPlane3Factor : public NoiseModelFactor1<Pose3> {
    OrientedPlane3 measured_;

public:
    CustomOrientedPlane3Factor(const OrientedPlane3& measured, const SharedNoiseModel& model, Key poseKey)
        : NoiseModelFactor1<Pose3>(model, poseKey), measured_(measured) {}

    // 误差评估函数
    Vector evaluateError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const override {
        OrientedPlane3 transformedPlane = measured_.transform(pose, H); // 变换平面
        
        // 单独定义误差据向量
        double zError = pose.translation().z() - transformedPlane.planeCoefficients()(3);
        Vector3 normalError = transformedPlane.planeCoefficients().head<3>() - measured_.planeCoefficients().head<3>();

        Vector error(4); // 定义为4维向量
        error << normalError, zError; // 确保合并的正确顺序

        if (H) {
            *H = Matrix::Zero(4, 6); // 初始化 4x6 矩阵
            (*H)(3, 5) = 1.0; // 对z方向的偏导数
            // 这里需要自行计算剩余的angular部分根据误差函数的特定定义


        }

        return error; // 返回误差
    }
};

int main() {
    NonlinearFactorGraph graph;

    // 初始位姿,只允许z的平移以及旋转freedom
    Pose3 initialPose(Rot3::Ypr(0.1, 0.1, 0.1), Point3(10.5, 20.4, 1.2));
    Vector6 poseConstraint;
    poseConstraint << 0.0, 0.0, 1.0, 1.0, 1.0, 1.0; // 仅允许调整z, roll, pitch, yaw
    auto poseNoise = noiseModel::Diagonal::Sigmas(poseConstraint * 0.1);
    graph.add(PriorFactor<Pose3>(Symbol('x', 0), initialPose, poseNoise));
    // 输出初始位姿
    std::cout << "Initial Pose:\n" << initialPose << std::endl;

    // 观测到的平面
    // OrientedPlane3 observedPlane1(0, 0, 1, -1.0); // 假设z是我们的目标
    // 添加多个观测平面
    std::vector<OrientedPlane3> observedPlanes = {
        OrientedPlane3(0, 0, 1, -1.5),  // 平面 1
        OrientedPlane3(0, 0, 1, -2.0),  // 平面 2
        OrientedPlane3(0, 0, 1, -1.0),  // 平面 3
        OrientedPlane3(0, 0, 1, -0.5)   // 平面 4
        // 其他平面可根据需求添加
    };

    auto planeNoise = noiseModel::Isotropic::Sigma(4, 1e-3);

    // 添加因子
    // graph.add(boost::make_shared<CustomOrientedPlane3Factor>(observedPlane1, planeNoise, Symbol('x', 0)));
    // 为所有平面添加因子
    for (size_t i = 0; i < observedPlanes.size(); ++i) {
        graph.add(boost::make_shared<CustomOrientedPlane3Factor>(observedPlanes[i], planeNoise, Symbol('x', 0)));
    }

    Values initialEstimate;
    initialEstimate.insert(Symbol('x', 0), initialPose);

    GaussNewtonParams params;
    params.setMaxIterations(10);
    params.setRelativeErrorTol(1e-5);
    GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
    Values result = optimizer.optimize();

    // 输出优化结果
    std::cout << "Optimized Pose:\n" << result.at<Pose3>(Symbol('x', 0)) << std::endl;

    return 0;
}
相关推荐
追随者永远是胜利者18 小时前
(LeetCode-Hot100)20. 有效的括号
java·算法·leetcode·职场和发展·go
瓦特what?19 小时前
快 速 排 序
数据结构·算法·排序算法
niuniudengdeng19 小时前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
hetao173383719 小时前
2026-02-13~16 hetao1733837 的刷题记录
c++·算法
你的冰西瓜21 小时前
2026春晚魔术揭秘——变魔法为物理
算法
忘梓.21 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(10)
c++·算法·动态规划·代理模式
foolish..21 小时前
动态规划笔记
笔记·算法·动态规划
消失的dk21 小时前
算法---动态规划
算法·动态规划
羑悻的小杀马特21 小时前
【动态规划篇】欣赏概率论与镜像法融合下,别出心裁探索解答括号序列问题
c++·算法·蓝桥杯·动态规划·镜像·洛谷·空隙法
绍兴贝贝21 小时前
代码随想录算法训练营第四十六天|LC647.回文子串|LC516.最长回文子序列|动态规划总结
数据结构·人工智能·python·算法·动态规划·力扣