蓝桥杯刷题第二天——背包问题

题目描述

有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是Vi价值是Wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有N行,每行两个整数,W,用空格隔开,分别表示第件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0< N,V≤ 1000

0<v,W≤1000

解题思路

此题可用动态规划来解决。

1.首先定义一个二维数组组dp[i][j],表示前i个物品放入容量为j的背包中能获得的最大价值。

2.状态转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]],其中v[i] 和 w[i] 分别是第i个物品的体积和价值。这个方程的含义是,对于第i个物品,有两种选择:不放入背包(价值为dp[i-1][j]),或者放入背包(价值为dp[i-1][j-v[i]]+w[i]),取两者中的较大值。

3.边界条件:当i=或=时,dp[i][j]=,即没有物品或者背包容量为0时,最大价值为 0。

代码示例

复制代码
N, V = map(int, input().split())
dp = [[0] * (V + 1) for _ in range(N + 1)]
for i in range(1, N + 1):
    v, w = map(int, input().split())
    for j in range(1, V + 1):
        dp[i][j] = dp[i - 1][j]
        if j >= v:
            dp[i][j] = max(dp[i][j], dp[i - 1][j - v] + w)
print(dp[N][V])

结果展示

相关推荐
程序员爱钓鱼42 分钟前
Python编程实战:面向对象与进阶语法——上下文管理器(with语句)
后端·python·ipython
程序员爱钓鱼1 小时前
Python编程实战:面向对象与进阶语法——装饰器(Decorator)
后端·python·ipython
JELEE.4 小时前
Django登录注册完整代码(图片、邮箱验证、加密)
前端·javascript·后端·python·django·bootstrap·jquery
孫治AllenSun5 小时前
【算法】图相关算法和递归
windows·python·算法
读研的武8 小时前
DashGo零基础入门 纯Python的管理系统搭建
开发语言·python
Andy8 小时前
Python基础语法4
开发语言·python
mm-q29152227299 小时前
Python+Requests零基础系统掌握接口自动化测试
开发语言·python
电院工程师10 小时前
SIMON64/128算法Verilog流水线实现(附Python实现)
python·嵌入式硬件·算法·密码学
轮到我狗叫了10 小时前
力扣.84柱状图中最大矩形 力扣.134加油站牛客.abb(hard 动态规划+哈希表)牛客.哈夫曼编码
算法·leetcode·职场和发展