hive表修改字段类型没有级连导致历史分区报错

一:问题背景

修改hive的分区表时有级连概念,指字段的最新状态,默认只对往后的分区数据生效,而之前的分区保留历史元数据状态。好处就是修改语句的效率很快,坏处就是如果历史分区的数据还有用,那就回发生分区元数据和表元数据的不一致报错

最终导致:presto或hive任务抽取历史分区会报如下的错误

bash 复制代码
There is a mismatch between the table and partition schemas. 
The types are incompatible and cannot be coerced. The column 'xxxx' 
in table 'xxxx' is declared as type 'string', 
but partition 'xxxx' declared column 'xxxxx' as type 'double'.

二:想要避免这样的问题,那元数据正确的改动方法,应该是使用hive的客户端,运行修改语句时,带上级连关键字CASCADE,如新增一个字段

bash 复制代码
alter table table_name add columns (column_1 string,column_2 string) CASCADE

而此时你已经发生没有级连问题时,只能用hive客户端把历史分区整个用alter的方式删掉,重新生成

三:特殊情况

1、如果你改的是一个全量表,此时没有级联的概念,你的修改最多的会导致数据改动时引擎发现已有数据类型和你要改的类型不一样,说白了就是无论做任何修改都要保证元数据的一致性

2、hive在改动字段元数据时一般不做前置检查,只会在你后期使用时报相应的错误,但是随着版本不同,后有前置检查的情况

3、上面这个问题如果你不想重新跑数据,那么情况允许可以使用spark引擎跑任务,因为spark没有级连的概念,始终和表元数据看齐,但是hive或者presto这些引擎有,遇到这样的情况就会报错

相关推荐
lipWOFb29 分钟前
扩展卡尔曼滤波soc估算 基于EKF算法的锂电池SOC 卡尔曼滤波估计电池soc ,simul...
hive
走遍西兰花.jpg4 小时前
hive如何使用python脚本
数据仓库·hive·hadoop·python
德彪稳坐倒骑驴4 小时前
Hive电商分析项目 Azkaban自动化运行
hive·hadoop·自动化
yumgpkpm8 小时前
Cloudera CDP/CMP华为鲲鹏版下 Spark应用加速,华为昇腾芯片的实用配置过程
hive·hadoop·elasticsearch·flink·kafka·hbase·cloudera
沃达德软件8 小时前
智慧监管新形态:科技赋能
大数据·数据仓库·人工智能·科技·数据库架构
青云交9 小时前
Java 大视界 -- Java+Spark 构建离线数据仓库:分层设计与 ETL 开发实战(445)
java·数据仓库·spark·分层设计·java+spark·离线数据仓库·etl 开发
zgl_200537799 小时前
源代码:ZGLanguage 解析SQL数据血缘 之 显示 WITH SQL 结构图
大数据·数据库·数据仓库·sql·数据治理·etl·数据血缘
m0_748252389 小时前
ervlet 编写过滤器
数据仓库·hive·hadoop
xiaomici1 天前
SAC Planning 高级计算公式-2
数据仓库
沃达德软件1 天前
智慧政工中心功能解析
大数据·数据仓库·数据库开发·数据库架构·etl工程师