hive表修改字段类型没有级连导致历史分区报错

一:问题背景

修改hive的分区表时有级连概念,指字段的最新状态,默认只对往后的分区数据生效,而之前的分区保留历史元数据状态。好处就是修改语句的效率很快,坏处就是如果历史分区的数据还有用,那就回发生分区元数据和表元数据的不一致报错

最终导致:presto或hive任务抽取历史分区会报如下的错误

bash 复制代码
There is a mismatch between the table and partition schemas. 
The types are incompatible and cannot be coerced. The column 'xxxx' 
in table 'xxxx' is declared as type 'string', 
but partition 'xxxx' declared column 'xxxxx' as type 'double'.

二:想要避免这样的问题,那元数据正确的改动方法,应该是使用hive的客户端,运行修改语句时,带上级连关键字CASCADE,如新增一个字段

bash 复制代码
alter table table_name add columns (column_1 string,column_2 string) CASCADE

而此时你已经发生没有级连问题时,只能用hive客户端把历史分区整个用alter的方式删掉,重新生成

三:特殊情况

1、如果你改的是一个全量表,此时没有级联的概念,你的修改最多的会导致数据改动时引擎发现已有数据类型和你要改的类型不一样,说白了就是无论做任何修改都要保证元数据的一致性

2、hive在改动字段元数据时一般不做前置检查,只会在你后期使用时报相应的错误,但是随着版本不同,后有前置检查的情况

3、上面这个问题如果你不想重新跑数据,那么情况允许可以使用spark引擎跑任务,因为spark没有级连的概念,始终和表元数据看齐,但是hive或者presto这些引擎有,遇到这样的情况就会报错

相关推荐
Gain_chance7 分钟前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
Gain_chance1 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
无级程序员10 小时前
大数据Hive之拉链表增量取数合并设计(主表加历史表合并成拉链表)
大数据·hive·hadoop
华农DrLai12 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
心疼你的一切1 天前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
qq_12498707531 天前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
十月南城1 天前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计