MiniCPM-o 2.6:开源大型语言模型在多模态任务上超越GPT-4o和Claude 3.5

MiniCPM-o 2.6是一款开源的大型语言模型(LLM),其在多模态任务上的表现令人瞩目,成功超越了GPT-4o和Claude 3.5等业界知名模型。以下是对MiniCPM-o 2.6的详细介绍:

一、卓越的多模态能力

MiniCPM-o 2.6采用了先进的端到端多模态架构,能够同时处理文本、图像、音频和视频等多种类型的数据。这一特性使得它在多模态任务上表现出色,能够更准确地理解和生成信息。

  1. 领先的视觉能力

    在OpenCompass评测中,MiniCPM-o 2.6的单图理解能力获得了70.2的平均分,超越了GPT-4o-202405、Gemini 1.5 Pro和Claude 3.5 Sonnet等专有模型。同时,它在多图和视频理解方面同样表现出色,超越了GPT-4V和Claude 3.5 Sonnet。

  2. 出色的语音能力

    MiniCPM-o 2.6支持双语(英语和中文)实时语音对话,并具有可配置的语音。在自动语音识别(ASR)和语音转文本(STT)翻译方面,它的表现优于GPT-4o-realtime。此外,它还提供了情感/速度/风格控制、端到端语音克隆和角色扮演等高级功能。

二、实时流媒体处理

MiniCPM-o 2.6具有强大的多模态实时流媒体处理能力,能够接受连续的视频和音频流,而无需用户查询。这一特性使得它在实时视频分析和交互式语音对话等应用场景中具有巨大潜力。在StreamingBench评测中,它在实时视频和全源(视频和音频)理解方面超越了GPT-4o-202408和Claude 3.5 Sonnet。

三、先进的OCR能力

MiniCPM-o 2.6在处理图像方面同样表现出色,能够处理高达180万像素的任何长宽比图像(例如1344x1344)。在OCRBench评测中,它在25B参数以下的模型中取得了最优性能,超越了GPT-4o-202405。此外,它还支持超过30种语言的多语言功能。

四、高效性与易用性

MiniCPM-o 2.6在效率方面也表现出色,具有先进的令牌密度(即将每个视觉令牌编码的像素数量)。它能够以640个令牌处理180万像素的图像,比大多数模型减少了75%的令牌数量。此外,它还支持llama.cpp,以实现本地设备上的高效CPU推理。同时,它提供了int4和GGUF格式的量化模型,以及16种不同尺寸,使得高吞吐量和内存高效的推理成为可能。用户还可以使用LLaMA-Factory对新领域和任务进行微调。

MiniCPM-o 2.6凭借其卓越的多模态能力、实时流媒体处理、先进的OCR能力、高效性与易用性等特点,在多模态任务上成功超越了GPT-4o和Claude 3.5等业界知名模型。对于对人工智能和大型语言模型感兴趣的开发者来说,MiniCPM-o 2.6无疑是一个值得尝试的开源选项。

git:https://github.com/OpenBMB/MiniCPM-o?tab=readme-ov-file

相关推荐
美狐美颜SDK开放平台19 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩20 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly20 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_4369621820 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉21 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会21 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China1 天前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
StarPrayers.1 天前
自蒸馏学习方法
人工智能·算法·学习方法
咚咚王者1 天前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python
深度学习lover1 天前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别