高反光表面三维视觉测量方法

显影剂

高动态范围技术

偏振折技术

https://www.bilibili.com/opus/680388726059171858

  1. 针对不同工作环境,调整镜头曝光周期与投影光强度;
  2. 开启HDR,并使用自动检测功能检测最佳光强;
  3. 显扬科技HY-M5 3D视觉相机安装在待检测反光物体上方,成像视野能清晰覆盖待测物,拍摄,完成识别或检测任务;

高动态范围成像(HDR)是一种技术,用于捕捉和显示更广泛的亮度范围,使得图像在明亮和阴暗区域都能保留更多细节。HDR 图像通常用于摄影、视频和游戏等领域。

HDR 的工作原理

1.多重曝光:通过对同一场景进行多次拍摄,使用不同的曝光设置(例如,正常曝光、过曝和欠曝),捕捉图像中的细节。

2.合成图像:将不同曝光的图像合成一幅 HDR 图像,通常使用算法来匹配和融合不同曝光的区域。

3.色调映射:由于 HDR 图像的亮度范围超出标准显示设备的能力,需要进行色调映射,将 HDR 图像转换为适合显示的 LDR(低动态范围)图像。

HDR 图像格式

  • EXR:一种常用的 HDR 图像格式,支持高精度和多通道数据。
  • HDR:另一种常见的 HDR 图像格式,通常用于游戏和图形应用。
    应用
  • 摄影:用于捕捉高对比度场景,如日出、日落或室内外场景。
  • 视频:在电影和游戏中创建具有更真实光照效果的画面。
  • 图形设计:用于生成更丰富的视觉效果和细节。

OpenCV 中的 HDR

在 OpenCV 中,可以使用以下函数处理 HDR 图像:

  • createMergeDebevec:用于生成 HDR 图像。
  • createTonemap :用于执行色调映射,将 HDR 图像转换为 LDR 图像。
    示例代码
    以下是一个简单的 HDR 处理示例:
    #include <opencv2/opencv.hpp>

int main() {

std::vectorcv::Mat images; // 存储不同曝光的图像

// 加载图像...

复制代码
// 创建 HDR 合并对象
cv::Ptr<cv::MergeDebevec> merge_deb = cv::createMergeDebevec();
cv::Mat hdr;
merge_deb->process(images, hdr);

// 创建色调映射对象
cv::Ptr<cv::Tonemap> tonemap = cv::createTonemap(2.2f);
cv::Mat ldr;
tonemap->process(hdr, ldr);

// 显示或保存结果...
return 0;

}

信噪比

论文

https://blog.csdn.net/weixin_44470443/article/details/103183331

https://www.cnblogs.com/shuimuqingyang/p/15355170.html

相关推荐
AI即插即用1 小时前
即插即用系列(代码实践)专栏介绍
开发语言·人工智能·深度学习·计算机视觉
2501_941322032 小时前
计算机视觉实现火灾与烟雾实时监测系统
人工智能·计算机视觉
wen__xvn2 小时前
目标检测的局限
人工智能·目标检测·计算机视觉
啊阿狸不会拉杆4 小时前
第 3 章 灰度变换与空间域滤波
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·数字图像处理
观无7 小时前
VisionPro 视觉检测工具基础知识点
人工智能·计算机视觉·视觉检测
童话名剑10 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
Chef_Chen10 小时前
数据科学每日总结--Day43--计算机视觉
人工智能·计算机视觉
北京地铁1号线11 小时前
人工智能岗位招聘专业笔试试卷及答案
人工智能·深度学习·计算机视觉·大语言模型
AI小怪兽12 小时前
YOLO26:面向实时目标检测的关键架构增强与性能基准测试
人工智能·yolo·目标检测·计算机视觉·目标跟踪·架构
岑梓铭12 小时前
YOLO深度学习(计算机视觉)—毕设笔记(yolo训练效率加快)
人工智能·笔记·深度学习·神经网络·yolo·计算机视觉