腾讯AI Lab与上交大探索模型“过度”思考

自OpenAI推出o1模型后,其多路&长链推理与复杂规划能力对于系统②·慢思考范式的建立提供了一种从train-time到test-time scaling law的延展。o1模型通过模拟人类深度思考过程,在思维链中运用自我反思、纠错以及探索多种解法等推理策略,延展了强大的推理性能,从而能够持续优化答案质量。然而,随着o1模型的广泛应用,一个潜在问题亦逐渐凸显出来,即"过度思考"。

近期,国内外许多类似o1的模型也陆续出现,比如Qwen团队近期开源的QwQ-32B-Preview,Deepseek推出的R1-Preview等模型。这些模型在推理时同样具备 "深度思考" 的特性,但也暴露出了类似的问题:在不必要的情况下生成过长的思维链反而浪费了计算资源。如论文标题的例子:"2+3=?"...

本篇论文的目的之一即是对这种"过度思考"对不同问题与任务在不同场景应用中展开系统性分析并尝试建立针对Outcome Efficiency与Process Efficiency的"过度"定义。

同时,论文亦提出了缓解"过度"思考的一系列数据样本构造及模型优化方法,包括:

Shortest Response:使用模型采样结果中最短的生成结果作为正样本。

First-Correct Solutions, FCS:使用模型采样结果中最短的首次得到正确答案的解答作为正样本,抛弃所有后续的思考。

FCS+Reflection:由于绝大多数的采样结果都是在第一个解答中就出现了正确答案,仅保留首个正确回答可能会使得模型退化,因此研究者们在第一次得到正确答案后,额外保留了一轮反思的内容。Greedily Diverse Solutions,GDS:除了单纯地对长度进行控制,另一个优化思路是尽可能保留更多样化的思考轨迹,因此研究者们在 FCS 方法的基础上,尽可能多地保留了包含不同推理策略的解答。

基于以上几种偏好数据,研究者们尝试了最基础的 SFT 以及多种偏好优化算法,如 DPO,RPO以及 SimPO,实验结果大家可参考原论文。

不过我想这也仅是刚刚开始,在现实世界复杂而多样的应用场景中,甚至于未来不同定义下的AGI,这种差异化的思考模式所带来的不同推理生成结果,也许会成为llm迈向并建立另一条模型通用能力上的助推器,而潜在的隐式CoT也许会在其中起着某种微妙的调和或平衡作用。

相关推荐
孞㐑¥6 分钟前
算法—滑动窗口
开发语言·c++·经验分享·笔记·算法
历程里程碑10 分钟前
Linux 3 指令(3):进阶指令:文件查看、资源管理、搜索打包压缩详解
linux·运维·服务器·c语言·数据结构·笔记·算法
AI-小柒15 分钟前
从零入门大语言模型(LLM):系统学习路线与实践指南
大数据·开发语言·人工智能·学习·信息可视化·语言模型·自然语言处理
才聚PMP22 分钟前
NPI项目如何用控制计划(CP)锁死 “量产一致性”?
人工智能
咋吃都不胖lyh24 分钟前
GBDT 中的前向分布算法和贪婪学习
学习·算法
marteker25 分钟前
现代租赁汽车的原厂锁车和解锁警报声替换成科基蛙的叫声
人工智能
leo__52027 分钟前
CLEAN算法仿真程序,用于雷达信号中的杂波抑制
算法
remender99936 分钟前
降本增效双赋能,IT人力外包成企业破局新路径
大数据·人工智能·物联网
一分之二~38 分钟前
二叉树--求最小深度(迭代和递归)
数据结构·c++·算法·leetcode·深度优先
Peter·Pan爱编程39 分钟前
RegexBox:让正则表达式变得简单,AI 驱动的正则工具箱
人工智能·正则表达式