Spark任务提交流程

当包含在application master中的spark-driver启动后,会与资源调度平台交互获取其他执行器资源,并通过反向注册通知对应的node节点启动执行容器。此外,还会根据程序的执行规划生成两个非常重要的东西,一个是根据spark任务执行计划生成n个ADG有向无环图,另一个是根据有向无环图生成对应的task set,也可以统称为stage,ADG和taskset由于宽窄依赖以及程序的复杂度从而导致本就是一对多的关系

在执行器启动并接收了taskset后,就意味着任务开始了跑数阶段,每一个taskset可以视为一个弹性数据集,简称rdd集合,不同的taskset之间以中间文件的方式传递数据,在这个过程中往往需要注意数据key的倾斜情况、task的多少导致的文件数是否合理、写入和写出的效率等,对任务的优化也生效于这些环节

不同的key分布、数据集的分区策略和中间文件生成策略会对shuffer的性能造成直接的影响,但并不是所有的teskset之间数据传递时都会发生shuffer,也有单纯的一对一数据交换。而是否发生shuffer取决于当前taskset数据血缘的宽窄与否,或者是你对rdd分区策略是否有干预,通俗的讲就是两个task set传递数据的key是否需要从新排列

应当注意的是,spark的shuffer分为两个阶段,上一个taskset的结束向文件中写数据的阶段叫做shuffer write,下一个taskset的读取叫做shuffer read,而没有发生shffer的taskset在这个流程中叫做inputdata和outputdata,可以在spark的ui上看到相关的消息

从跑数上总体来说,spark-driver内部是依靠了两个调度器,ADG调度器负责生成可用于执行的stage,而stage的调度与监控则由taskset调度器在负责,在所有的stage执行结束后,AM会通过向资源调度框架申请注销自己,来结束任务

相关推荐
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw6 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe7 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥7 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿7 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿8 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1218 小时前
已有安全措施确认(上)
大数据·网络
人道领域9 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_124987075310 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader10 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink